18 | EVOLUTION AND THE ORIGIN OF SPECIES

Figure 18.1 All organisms are products of evolution adapted to their environment. (a) Saguaro (Carnegiea gigantea) can soak up 750 liters of water in a single rain storm, enabling these cacti to survive the dry conditions of the Sonora desert in Mexico and the Southwestern United States. (b) The Andean semiaquatic lizard (Potamites montanicola) discovered in Peru in 2010 lives between 1,570 to 2,100 meters in elevation, and, unlike most lizards, is nocturnal and swims. Scientists still do no know how these cold-blood animals are able to move in the cold (10 to 15°C) temperatures of the Andean night. (credit a: modification of work by Gentry George, U.S. Fish and Wildlife Service; credit b: modification of work by Germán Chávez and Diego Vásquez, ZooKeys)

Chapter Outline

18.1: Understanding Evolution
18.2: Formation of New Species
18.3: Reconnection and Rates of Speciation

Introduction

All species of living organisms, from bacteria to baboons to blueberries, evolved at some point from a different species. Although it may seem that living things today stay much the same, that is not the case—evolution is an ongoing process.

The theory of evolution is the unifying theory of biology, meaning it is the framework within which biologists ask questions about the living world. Its power is that it provides direction for predictions about living things that are borne out in experiment after experiment. The Ukrainian-born American geneticist Theodosius Dobzhansky famously wrote that “nothing makes sense in biology except in the light of evolution.”[1] He meant that the tenet that all life has evolved and diversified from a common ancestor is the foundation from which we approach all questions in biology.

18.1 | Understanding Evolution

By the end of this section, you will be able to:

• Describe how the present-day theory of evolution was developed
• Define adaptation
• Explain convergent and divergent evolution
• Describe homologous and vestigial structures
• Discuss misconceptions about the theory of evolution

Evolution by natural selection describes a mechanism for how species change over time. That species change had been suggested and debated well before Darwin began to explore this idea. The view that species were static and unchanging was grounded in the writings of Plato, yet there were also ancient Greeks who expressed evolutionary ideas. In the eighteenth century, ideas about the evolution of animals were reintroduced by the naturalist Georges-Louis Leclerc Comte de Buffon who observed that various geographic regions have different plant and animal populations, even when the environments are similar. It was also accepted that there were extinct species.

During this time, James Hutton, a Scottish naturalist, proposed that geological change occurred gradually by the accumulation of small changes from processes operating like they are today over long periods of time. This contrasted with the predominant view that the geology of the planet was a consequence of catastrophic events occurring during a relatively brief past. Hutton’s view was popularized in the nineteenth century by the geologist Charles Lyell who became a friend to Darwin. Lyell’s ideas were influential on Darwin’s thinking: Lyell’s notion of the greater age of Earth gave more time for gradual change in species, and the process of change provided an analogy for gradual change in species. In the early nineteenth century, Jean-Baptiste Lamarck published a book that detailed a mechanism for evolutionary change. This mechanism is now referred to as an inheritance of acquired characteristics by which modifications in an individual are caused by its environment, or the use or disuse of a structure during its lifetime, could be inherited by its offspring and thus bring about change in a species. While this mechanism for evolutionary change was discredited, Lamarck’s ideas were an important influence on evolutionary thought.

Charles Darwin and Natural Selection

In the mid-nineteenth century, the actual mechanism for evolution was independently conceived of and described by two naturalists: Charles Darwin and Alfred Russel Wallace. Importantly, each naturalist spent time exploring the natural world on expeditions to the tropics. From 1831 to 1836, Darwin traveled around the world on H.M.S. Beagle, including stops in South America, Australia, and the southern tip of Africa. Wallace traveled to Brazil to collect insects in the Amazon rainforest from 1848 to 1852 and to the Malay Archipelago from 1854 to 1862. Darwin’s journey, like Wallace’s later journeys to the Malay Archipelago, included stops at several island chains, the last being the Galápagos Islands west of Ecuador. On these islands, Darwin observed species of organisms on different islands that were clearly similar, yet had distinct differences. For example, the ground finches inhabiting the Galápagos Islands comprised several species with a unique beak shape (Figure 18.2). The species on the islands had a graded series of beak sizes and shapes with very small differences between the most similar. He observed that these finches closely resembled another finch species on the mainland of South America. Darwin imagined that the island species might be species modified from one of the original mainland species. Upon further study, he realized that the varied beaks of each finch helped the birds acquire a specific type of food. For example, seed-eating finches had stronger, thicker beaks for breaking seeds, and insect-eating finches had spear-like beaks for stabbing their prey.
Wallace and Darwin both observed similar patterns in other organisms and they independently developed the same explanation for how and why such changes could take place. Darwin called this mechanism natural selection. **Natural selection**, also known as “survival of the fittest,” is the more prolific reproduction of individuals with favorable traits that survive environmental change because of those traits; this leads to evolutionary change.

For example, a population of giant tortoises found in the Galapagos Archipelago was observed by Darwin to have longer necks than those that lived on other islands with dry lowlands. These tortoises were “selected” because they could reach more leaves and access more food than those with short necks. In times of drought when fewer leaves would be available, those that could reach more leaves had a better chance to eat and survive than those that couldn’t reach the food source. Consequently, long-necked tortoises would be more likely to be reproductively successful and pass the long-necked trait to their offspring. Over time, only long-necked tortoises would be present in the population.

Natural selection, Darwin argued, was an inevitable outcome of three principles that operated in nature. First, most characteristics of organisms are inherited, or passed from parent to offspring. Although no one, including Darwin and Wallace, knew how this happened at the time, it was a common understanding. Second, more offspring are produced than are able to survive, so resources for survival and reproduction are limited. The capacity for reproduction in all organisms outstrips the availability of resources to support their numbers. Thus, there is competition for those resources in each generation. Both Darwin and Wallace’s understanding of this principle came from reading an essay by the economist Thomas Malthus who discussed this principle in relation to human populations. Third, offspring vary among each other in regard to their characteristics and those variations are inherited. Darwin and Wallace reasoned that offspring with inherited characteristics which allow them to best compete for limited resources will survive and have more offspring than those individuals with variations that are less able to compete. Because characteristics are inherited, these traits will be better represented in the next generation. This will lead to change in populations over generations in a process that Darwin called descent with modification. Ultimately, natural selection leads to greater adaptation of the population to its local environment; it is the only mechanism known for adaptive evolution.

Papers by Darwin and Wallace (Figure 18.3) presenting the idea of natural selection were read together in 1858 before the Linnean Society in London. The following year Darwin’s book, *On the Origin of Species*, was published. His book outlined in considerable detail his arguments for evolution by natural selection.
Demonstrations of evolution by natural selection are time consuming and difficult to obtain. One of the best examples has been demonstrated in the very birds that helped to inspire Darwin’s theory: the Galápagos finches. Peter and Rosemary Grant and their colleagues have studied Galápagos finch populations every year since 1976 and have provided important demonstrations of natural selection. The Grants found changes from one generation to the next in the distribution of beak shapes with the medium ground finch on the Galápagos island of Daphne Major. The birds have inherited variation in the bill shape with some birds having wide deep bills and others having thinner bills. During a period in which rainfall was higher than normal because of an El Niño, the large hard seeds that large-billed birds ate were reduced in number; however, there was an abundance of the small soft seeds which the small-billed birds ate. Therefore, survival and reproduction were much better in the following years for the small-billed birds. In the years following this El Niño, the Grants measured beak sizes in the population and found that the average bill size was smaller. Since bill size is an inherited trait, parents with smaller bills had more offspring and the size of bills had evolved to be smaller. As conditions improved in 1987 and larger seeds became more available, the trend toward smaller average bill size ceased.
Field Biologist

Many people hike, explore caves, scuba dive, or climb mountains for recreation. People often participate in these activities hoping to see wildlife. Experiencing the outdoors can be incredibly enjoyable and invigorating. What if your job was to be outside in the wilderness? Field biologists by definition work outdoors in the “field.” The term field in this case refers to any location outdoors, even under water. A field biologist typically focuses research on a certain species, group of organisms, or a single habitat (Figure 18.4).

Figure 18.4 A field biologist tranquilizes a polar bear for study. (credit: Karen Rhode)

One objective of many field biologists includes discovering new species that have never been recorded. Not only do such findings expand our understanding of the natural world, but they also lead to important innovations in fields such as medicine and agriculture. Plant and microbial species, in particular, can reveal new medicinal and nutritive knowledge. Other organisms can play key roles in ecosystems or be considered rare and in need of protection. When discovered, these important species can be used as evidence for environmental regulations and laws.

Processes and Patterns of Evolution

Natural selection can only take place if there is variation, or differences, among individuals in a population. Importantly, these differences must have some genetic basis; otherwise, the selection will not lead to change in the next generation. This is critical because variation among individuals can be caused by non-genetic reasons such as an individual being taller because of better nutrition rather than different genes.

Genetic diversity in a population comes from two main mechanisms: mutation and sexual reproduction. Mutation, a change in DNA, is the ultimate source of new alleles, or new genetic variation in any population. The genetic changes caused by mutation can have one of three outcomes on the phenotype. A mutation affects the phenotype of the organism in a way that gives it reduced fitness—lower likelihood of survival or fewer offspring. A mutation may produce a phenotype with a beneficial effect on fitness. And, many mutations will also have no effect on the fitness of the phenotype; these are called neutral mutations. Mutations may also have a whole range of effect sizes on the fitness of the organism that expresses them in their phenotype, from a small effect to a great effect. Sexual reproduction also leads to genetic diversity: when two parents reproduce, unique combinations of alleles assemble to produce the unique genotypes and thus phenotypes in each of the offspring.

A heritable trait that helps the survival and reproduction of an organism in its present environment is called an adaptation. Scientists describe groups of organisms becoming adapted to their environment when a change in the range of genetic variation occurs over time that increases or maintains the “fit” of the population to its environment. The webbed feet of platypuses are an adaptation for swimming. The snow leopards’ thick fur is an adaptation for living in the cold. The cheetahs’ fast speed is an adaptation for catching prey.
Whether or not a trait is favorable depends on the environmental conditions at the time. The same traits are not always selected because environmental conditions can change. For example, consider a species of plant that grew in a moist climate and did not need to conserve water. Large leaves were selected because they allowed the plant to obtain more energy from the sun. Large leaves require more water to maintain than small leaves, and the moist environment provided favorable conditions to support large leaves. After thousands of years, the climate changed, and the area no longer had excess water. The direction of natural selection shifted so that plants with small leaves were selected because those populations were able to conserve water to survive the new environmental conditions.

The evolution of species has resulted in enormous variation in form and function. Sometimes, evolution gives rise to groups of organisms that become tremendously different from each other. When two species evolve in diverse directions from a common point, it is called **divergent evolution**. Such divergent evolution can be seen in the forms of the reproductive organs of flowering plants which share the same basic anatomies; however, they can look very different as a result of selection in different physical environments and adaptation to different kinds of pollinators (Figure 18.5).

Figure 18.5 Flowering plants evolved from a common ancestor. Notice that the (a) dense blazing star (*Liatrus spicata*) and the (b) purple coneflower (*Echinacea purpurea*) vary in appearance, yet both share a similar basic morphology. (credit a: modification of work by Drew Avery; credit b: modification of work by Cory Zanker)

In other cases, similar phenotypes evolve independently in distantly related species. For example, flight has evolved in both bats and insects, and they both have structures we refer to as wings, which are adaptations to flight. However, the wings of bats and insects have evolved from very different original structures. This phenomenon is called **convergent evolution**, where similar traits evolve independently in species that do not share a common ancestry. The two species came to the same function, flying, but did so separately from each other.

These physical changes occur over enormous spans of time and help explain how evolution occurs. Natural selection acts on individual organisms, which in turn can shape an entire species. Although natural selection may work in a single generation on an individual, it can take thousands or even millions of years for the genotype of an entire species to evolve. It is over these large time spans that life on earth has changed and continues to change.

Evidence of Evolution

The evidence for evolution is compelling and extensive. Looking at every level of organization in living systems, biologists see the signature of past and present evolution. Darwin dedicated a large portion of his book, *On the Origin of Species*, to identifying patterns in nature that were consistent with evolution, and since Darwin, our understanding has become clearer and broader.

Fossils

Fossils provide solid evidence that organisms from the past are not the same as those found today, and fossils show a progression of evolution. Scientists determine the age of fossils and categorize them from all over the world to determine when the organisms lived relative to each other. The resulting fossil record tells the story of the past and shows the evolution of form over millions of years (Figure 18.6). For example, scientists have recovered highly detailed records showing the evolution of humans and horses (Figure 18.6). The whale flipper shares a similar morphology to appendages of birds and mammals (Figure 18.7) indicating that these species share a common ancestor.
Figure 18.6 In this (a) display, fossil hominids are arranged from oldest (bottom) to newest (top). As hominids evolved, the shape of the skull changed. An artist’s rendition of (b) extinct species of the genus Equus reveals that these ancient species resembled the modern horse (Equus ferus) but varied in size.

Anatomy and Embryology

Another type of evidence for evolution is the presence of structures in organisms that share the same basic form. For example, the bones in the appendages of a human, dog, bird, and whale all share the same overall construction (Figure 18.7) resulting from their origin in the appendages of a common ancestor. Over time, evolution led to changes in the shapes and sizes of these bones in different species, but they have maintained the same overall layout. Scientists call these synonymous parts homologous structures.

Figure 18.7 The similar construction of these appendages indicates that these organisms share a common ancestor.

Some structures exist in organisms that have no apparent function at all, and appear to be residual parts from a past common ancestor. These unused structures without function are called vestigial structures. Other examples of vestigial structures are wings on flightless birds, leaves on some cacti, and hind leg bones in whales.

Visit this interactive site (http://openstaxcollege.org/l/bone_structures) to guess which bones structures are homologous and which are analogous, and see examples of evolutionary adaptations to illustrate these concepts.

Another evidence of evolution is the convergence of form in organisms that share similar environments. For example, species of unrelated animals, such as the arctic fox and ptarmigan, living in the arctic region have been selected for seasonal...
white phenotypes during winter to blend with the snow and ice (Figure 18.8ab). These similarities occur not because of common ancestry, but because of similar selection pressures—the benefits of not being seen by predators.

![Figure 18.8](Image) The white winter coat of the (a) arctic fox and the (b) ptarmigan’s plumage are adaptations to their environments. (credit a: modification of work by Keith Morehouse)

Embryology, the study of the development of the anatomy of an organism to its adult form, also provides evidence of relatedness between now widely divergent groups of organisms. Mutational tweaking in the embryo can have such magnified consequences in the adult that embryo formation tends to be conserved. As a result, structures that are absent in some groups often appear in their embryonic forms and disappear by the time the adult or juvenile form is reached. For example, all vertebrate embryos, including humans, exhibit gill slits and tails at some point in their early development. These disappear in the adults of terrestrial groups but are maintained in adult forms of aquatic groups such as fish and some amphibians. Great ape embryos, including humans, have a tail structure during their development that is lost by the time of birth.

Biogeography

The geographic distribution of organisms on the planet follows patterns that are best explained by evolution in conjunction with the movement of tectonic plates over geological time. Broad groups that evolved before the breakup of the supercontinent Pangaea (about 200 million years ago) are distributed worldwide. Groups that evolved since the breakup appear uniquely in regions of the planet, such as the unique flora and fauna of northern continents that formed from the supercontinent Laurasia and of the southern continents that formed from the supercontinent Gondwana. The presence of members of the plant family Proteaceae in Australia, southern Africa, and South America is best by their presence prior to the southern supercontinent Gondwana breaking up.

The great diversification of marsupials in Australia and the absence of other mammals reflect Australia’s long isolation. Australia has an abundance of endemic species—species found nowhere else—which is typical of islands whose isolation by expanses of water prevents species to migrate. Over time, these species diverge evolutionarily into new species that look very different from their ancestors that may exist on the mainland. The marsupials of Australia, the finches on the Galápagos, and many species on the Hawaiian Islands are all unique to their one point of origin, yet they display distant relationships to ancestral species on mainlands.

Molecular Biology

Like anatomical structures, the structures of the molecules of life reflect descent with modification. Evidence of a common ancestor for all of life is reflected in the universality of DNA as the genetic material and in the near universality of the genetic code and the machinery of DNA replication and expression. Fundamental divisions in life between the three domains are reflected in major structural differences in otherwise conservative structures such as the components of ribosomes and the structures of membranes. In general, the relatedness of groups of organisms is reflected in the similarity of their DNA sequences—exactly the pattern that would be expected from descent and diversification from a common ancestor.

DNA sequences have also shed light on some of the mechanisms of evolution. For example, it is clear that the evolution of new functions for proteins commonly occurs after gene duplication events that allow the free modification of one copy by mutation, selection, or drift (changes in a population’s gene pool resulting from chance), while the second copy continues to produce a functional protein.
Misconceptions of Evolution

Although the theory of evolution generated some controversy when it was first proposed, it was almost universally accepted by biologists, particularly younger biologists, within 20 years after publication of On the Origin of Species. Nevertheless, the theory of evolution is a difficult concept and misconceptions about how it works abound.

Evolution Is Just a Theory

Critics of the theory of evolution dismiss its importance by purposefully confounding the everyday usage of the word “theory” with the way scientists use the word. In science, a “theory” is understood to be a body of thoroughly tested and verified explanations for a set of observations of the natural world. Scientists have a theory of the atom, a theory of gravity, and the theory of relativity, each of which describes understood facts about the world. In the same way, the theory of evolution describes facts about the living world. As such, a theory in science has survived significant efforts to discredit it by scientists. In contrast, a “theory” in common vernacular is a word meaning a guess or suggested explanation; this meaning is more akin to the scientific concept of “hypothesis.” When critics of evolution say evolution is “just a theory,” they are implying that there is little evidence supporting it and that it is still in the process of being rigorously tested. This is a mischaracterization.

Individuals Evolve

Evolution is the change in genetic composition of a population over time, specifically over generations, resulting from differential reproduction of individuals with certain alleles. Individuals do change over their lifetime, obviously, but this is called development and involves changes programmed by the set of genes the individual acquired at birth in coordination with the individual’s environment. When thinking about the evolution of a characteristic, it is probably best to think about the change of the average value of the characteristic in the population over time. For example, when natural selection leads to bill-size change in medium-ground finches in the Galápagos, this does not mean that individual bills on the finches are changing. If one measures the average bill size among all individuals in the population at one time and then measures the average bill size in the population several years later, this average value will be different as a result of evolution. Although some individuals may survive from the first time to the second, they will still have the same bill size; however, there will be many new individuals that contribute to the shift in average bill size.

Evolution Explains the Origin of Life

It is a common misunderstanding that evolution includes an explanation of life’s origins. Conversely, some of the theory’s critics believe that it cannot explain the origin of life. The theory does not try to explain the origin of life. The theory of evolution explains how populations change over time and how life diversifies the origin of species. It does not shed light on the beginnings of life including the origins of the first cells, which is how life is defined. The mechanisms of the origin of life on Earth are a particularly difficult problem because it occurred a very long time ago, and presumably it just occurred once. Importantly, biologists believe that the presence of life on Earth precludes the possibility that the events that led to life on Earth can be repeated because the intermediate stages would immediately become food for existing living things.

However, once a mechanism of inheritance was in place in the form of a molecule like DNA either within a cell or pre-cell, these entities would be subject to the principle of natural selection. More effective reproducers would increase in frequency at the expense of inefficient reproducers. So while evolution does not explain the origin of life, it may have something to say about some of the processes operating once pre-living entities acquired certain properties.

Organisms Evolve on Purpose

Statements such as “organisms evolve in response to a change in an environment” are quite common, but such statements can lead to two types of misunderstandings. First, the statement must not be understood to mean that individual organisms evolve. The statement is shorthand for “a population evolves in response to a changing environment.” However, a
second misunderstanding may arise by interpreting the statement to mean that the evolution is somehow intentional. A changed environment results in some individuals in the population, those with particular phenotypes, benefiting and therefore producing proportionately more offspring than other phenotypes. This results in change in the population if the characteristics are genetically determined.

It is also important to understand that the variation that natural selection works on is already in a population and does not arise in response to an environmental change. For example, applying antibiotics to a population of bacteria will, over time, select a population of bacteria that are resistant to antibiotics. The resistance, which is caused by a gene, did not arise by mutation because of the application of the antibiotic. The gene for resistance was already present in the gene pool of the bacteria, likely at a low frequency. The antibiotic, which kills the bacterial cells without the resistance gene, strongly selects individuals that are resistant, since these would be the only ones that survived and divided. Experiments have demonstrated that mutations for antibiotic resistance do not arise as a result of antibiotic.

In a larger sense, evolution is not goal directed. Species do not become “better” over time; they simply track their changing environment with adaptations that maximize their reproduction in a particular environment at a particular time. Evolution has no goal of making faster, bigger, more complex, or even smarter species, despite the commonness of this kind of language in popular discourse. What characteristics evolve in a species are a function of the variation present and the environment, both of which are constantly changing in a non-directional way. What trait is fit in one environment at one time may well be fatal at some point in the future. This holds equally well for a species of insect as it does the human species.

18.2 | Formation of New Species

By the end of this section, you will be able to:

- Define species and describe how species are identified as different
- Describe genetic variables that lead to speciation
- Identify prezygotic and postzygotic reproductive barriers
- Explain allopatric and sympatric speciation
- Describe adaptive radiation

Although all life on earth shares various genetic similarities, only certain organisms combine genetic information by sexual reproduction and have offspring that can then successfully reproduce. Scientists call such organisms members of the same biological species.

Species and the Ability to Reproduce

A species is a group of individual organisms that interbreed and produce fertile, viable offspring. According to this definition, one species is distinguished from another when, in nature, it is not possible for matings between individuals from each species to produce fertile offspring.

Members of the same species share both external and internal characteristics, which develop from their DNA. The closer relationship two organisms share, the more DNA they have in common, just like people and their families. People’s DNA is likely to be more like their father or mother’s DNA than their cousin or grandparent’s DNA. Organisms of the same species have the highest level of DNA alignment and therefore share characteristics and behaviors that lead to successful reproduction.

Species’ appearance can be misleading in suggesting an ability or inability to mate. For example, even though domestic dogs (Canis lupus familiaris) display phenotypic differences, such as size, build, and coat, most dogs can interbreed and produce viable puppies that can mature and sexually reproduce (Figure 18.9).
In other cases, individuals may appear similar although they are not members of the same species. For example, even though bald eagles (Haliaeetus leucocephalus) and African fish eagles (Haliaeetus vocifer) are both birds and eagles, each belongs to a separate species group (Figure 18.10). If humans were to artificially intervene and fertilize the egg of a bald eagle with the sperm of an African fish eagle and a chick did hatch, that offspring, called a hybrid (a cross between two species), would probably be infertile—unable to successfully reproduce after it reached maturity. Different species may have different genes that are active in development; therefore, it may not be possible to develop a viable offspring with two different sets of directions. Thus, even though hybridization may take place, the two species still remain separate.

Populations of species share a gene pool: a collection of all the variants of genes in the species. Again, the basis to any changes in a group or population of organisms must be genetic for this is the only way to share and pass on traits. When variations occur within a species, they can only be passed to the next generation along two main pathways: asexual reproduction or sexual reproduction. The change will be passed on asexually simply if the reproducing cell possesses the changed trait. For the changed trait to be passed on by sexual reproduction, a gamete, such as a sperm or egg cell, must possess the changed trait. In other words, sexually-reproducing organisms can experience several genetic changes in their body cells, but if these changes do not occur in a sperm or egg cell, the changed trait will never reach the next generation. Only heritable traits can evolve. Therefore, reproduction plays a paramount role for genetic change to take root in a population or species. In short, organisms must be able to reproduce with each other to pass new traits to offspring.

Speciation

The biological definition of species, which works for sexually reproducing organisms, is a group of actually or potentially interbreeding individuals. There are exceptions to this rule. Many species are similar enough that hybrid offspring are possible and may often occur in nature, but for the majority of species this rule generally holds. In fact, the presence in nature of hybrids between similar species suggests that they may have descended from a single interbreeding species, and the speciation process may not yet be completed.

Given the extraordinary diversity of life on the planet there must be mechanisms for speciation: the formation of two species from one original species. Darwin envisioned this process as a branching event and diagrammed the process in the only illustration found in *On the Origin of Species* (Figure 18.11). Compare this illustration to the diagram of elephant
evolution (Figure 18.11b), which shows that as one species changes over time, it branches to form more than one new species, repeatedly, as long as the population survives or until the organism becomes extinct.

For speciation to occur, two new populations must be formed from one original population and they must evolve in such a way that it becomes impossible for individuals from the two new populations to interbreed. Biologists have proposed mechanisms by which this could occur that fall into two broad categories. Allopatric speciation (allo- = "other"; -patric = "homeland") involves geographic separation of populations from a parent species and subsequent evolution. Sympatric speciation (sym- = "same"; -patric = "homeland") involves speciation occurring within a parent species remaining in one location.

Biologists think of speciation events as the splitting of one ancestral species into two descendant species. There is no reason why there might not be more than two species formed at one time except that it is less likely and multiple events can be conceptualized as single splits occurring close in time.

Allopatric Speciation

A geographically continuous population has a gene pool that is relatively homogeneous. Gene flow, the movement of alleles across the range of the species, is relatively free because individuals can move and then mate with individuals in their new location. Thus, the frequency of an allele at one end of a distribution will be similar to the frequency of the allele at the other end. When populations become geographically discontinuous, that free-flow of alleles is prevented. When that separation lasts for a period of time, the two populations are able to evolve along different trajectories. Thus, their allele frequencies at numerous genetic loci gradually become more and more different as new alleles independently arise by mutation in each population. Typically, environmental conditions, such as climate, resources, predators, and competitors for the two populations will differ causing natural selection to favor divergent adaptations in each group.

Isolation of populations leading to allopatric speciation can occur in a variety of ways: a river forming a new branch, erosion forming a new valley, a group of organisms traveling to a new location without the ability to return, or seeds floating over the ocean to an island. The nature of the geographic separation necessary to isolate populations depends entirely on the biology of the organism and its potential for dispersal. If two flying insect populations took up residence in separate nearby valleys, chances are, individuals from each population would fly back and forth continuing gene flow. However, if two rodent populations became divided by the formation of a new lake, continued gene flow would be unlikely; therefore, speciation would be more likely.

Biologists group allopatric processes into two categories: dispersal and vicariance. Dispersal is when a few members of a species move to a new geographical area, and vicariance is when a natural situation arises to physically divide organisms.

Scientists have documented numerous cases of allopatric speciation taking place. For example, along the west coast of the United States, two separate sub-species of spotted owls exist. The northern spotted owl has genetic and phenotypic differences from its close relative: the Mexican spotted owl, which lives in the south (Figure 18.12).
The northern spotted owl and the Mexican spotted owl inhabit geographically separate locations with different climates and ecosystems. The owl is an example of allopatric speciation. (credit "northern spotted owl": modification of work by John and Karen Hollingsworth; credit "Mexican spotted owl": modification of work by Bill Radke)

Additionally, scientists have found that the further the distance between two groups that once were the same species, the more likely it is that speciation will occur. This seems logical because as the distance increases, the various environmental factors would likely have less in common than locations in close proximity. Consider the two owls: in the north, the climate is cooler than in the south; the types of organisms in each ecosystem differ, as do their behaviors and habits; also, the hunting habits and prey choices of the southern owls vary from the northern owls. These variances can lead to evolved differences in the owls, and speciation likely will occur.

Adaptive Radiation

In some cases, a population of one species disperses throughout an area, and each finds a distinct niche or isolated habitat. Over time, the varied demands of their new lifestyles lead to multiple speciation events originating from a single species. This is called *adaptive radiation* because many adaptations evolve from a single point of origin; thus, causing the species to radiate into several new ones. Island archipelagos like the Hawaiian Islands provide an ideal context for adaptive radiation events because water surrounds each island which leads to geographical isolation for many organisms. The Hawaiian honeycreeper illustrates one example of adaptive radiation. From a single species, called the founder species, numerous species have evolved, including the six shown in Figure 18.13.

Figure 18.12 The northern spotted owl and the Mexican spotted owl inhabit geographically separate locations with different climates and ecosystems. The owl is an example of allopatric speciation. (credit "northern spotted owl": modification of work by John and Karen Hollingsworth; credit "Mexican spotted owl": modification of work by Bill Radke)
Figure 18.13 The honeycreeper birds illustrate adaptive radiation. From one original species of bird, multiple others evolved, each with its own distinctive characteristics.

Notice the differences in the species’ beaks in Figure 18.13. Evolution in response to natural selection based on specific food sources in each new habitat led to evolution of a different beak suited to the specific food source. The seed-eating bird has a thicker, stronger beak which is suited to break hard nuts. The nectar-eating birds have long beaks to dip into flowers to reach the nectar. The insect-eating birds have beaks like swords, appropriate for stabbing and impaling insects. Darwin’s finches are another example of adaptive radiation in an archipelago.

Click through this interactive site (http://openstaxcollege.org/l/bird_evolution) to see how island birds evolved in evolutionary increments from 5 million years ago to today.

Sympatric Speciation

Can divergence occur if no physical barriers are in place to separate individuals who continue to live and reproduce in the same habitat? The answer is yes. The process of speciation within the same space is called sympatric speciation; the prefix “sym” means same, so “sympatric” means “same homeland” in contrast to “allopatric” meaning “other homeland.” A number of mechanisms for sympatric speciation have been proposed and studied.

One form of sympatric speciation can begin with a serious chromosomal error during cell division. In a normal cell division event chromosomes replicate, pair up, and then separate so that each new cell has the same number of chromosomes. However, sometimes the pairs separate and the end cell product has too many or too few individual chromosomes in a condition called aneuploidy (Figure 18.14).
Aneuploidy results when the gametes have too many or too few chromosomes due to nondisjunction during meiosis. In the example shown here, the resulting offspring will have $2n+1$ or $2n-1$ chromosomes.

Which is most likely to survive, offspring with $2n+1$ chromosomes or offspring with $2n-1$ chromosomes?

Polyplody is a condition in which a cell or organism has an extra set, or sets, of chromosomes. Scientists have identified two main types of polyplody that can lead to reproductive isolation of an individual in the polyplody state. Reproductive isolation is the inability to interbreed. In some cases, a polyploid individual will have two or more complete sets of chromosomes from its own species in a condition called autopolyplody (Figure 18.15). The prefix “auto-” means “self,” so the term means multiple chromosomes from one’s own species. Polyplody results from an error in meiosis in which all of the chromosomes move into one cell instead of separating.

![Autopolyplody Resulting in Offspring with Two Sets of Chromosomes](image)

Figure 18.15 Autopolyplody results when mitosis is not followed by cytokinesis.

For example, if a plant species with $2n = 6$ produces autopolyploid gametes that are also diploid ($2n = 6$, when they should be $n = 3$), the gametes now have twice as many chromosomes as they should have. These new gametes will be incompatible with the normal gametes produced by this plant species. However, they could either self-pollinate or reproduce with other autopolyploid plants with gametes having the same diploid number. In this way, sympatric speciation can occur quickly by forming offspring with $4n$ called a tetraploid. These individuals would immediately be able to reproduce only with those of this new kind and not those of the ancestral species.

The other form of polyplody occurs when individuals of two different species reproduce to form a viable offspring called an allopolyploid. The prefix “allo-” means “other” (recall from allopatric): therefore, an allopolyploid occurs when gametes from two different species combine. *Figure 18.16* illustrates one possible way an allopolyploid can form. Notice how it takes two generations, or two reproductive acts, before the viable fertile hybrid results.
Alloploidy results when two species mate to produce viable offspring. In the example shown, a normal gamete from one species fuses with a polyploid gamete from another. Two matings are necessary to produce viable offspring.

The cultivated forms of wheat, cotton, and tobacco plants are all allopolyploids. Although polyploidy occurs occasionally in animals, it takes place most commonly in plants. (Animals with any of the types of chromosomal aberrations described here are unlikely to survive and produce normal offspring.) Scientists have discovered more than half of all plant species studied relate back to a species evolved through polyploidy. With such a high rate of polyploidy in plants, some scientists hypothesize that this mechanism takes place more as an adaptation than as an error.

Reproductive Isolation

Given enough time, the genetic and phenotypic divergence between populations will affect characters that influence reproduction: if individuals of the two populations were to be brought together, mating would be less likely, but if mating occurred, offspring would be non-viable or infertile. Many types of diverging characters may affect the reproductive isolation, the ability to interbreed, of the two populations.

Reproductive isolation can take place in a variety of ways. Scientists organize them into two groups: prezygotic barriers and postzygotic barriers. Recall that a zygote is a fertilized egg: the first cell of the development of an organism that reproduces sexually. Therefore, a prezygotic barrier is a mechanism that blocks reproduction from taking place; this includes barriers that prevent fertilization when organisms attempt reproduction. A postzygotic barrier occurs after zygote formation; this includes organisms that don’t survive the embryonic stage and those that are born sterile.

Some types of prezygotic barriers prevent reproduction entirely. Many organisms only reproduce at certain times of the year, often just annually. Differences in breeding schedules, called temporal isolation, can act as a form of reproductive isolation. For example, two species of frogs inhabit the same area, but one reproduces from January to March, whereas the other reproduces from March to May (Figure 18.17).

![Figure 18.16 Alloploidy results when two species mate to produce viable offspring. In the example shown, a normal gamete from one species fuses with a polyploid gamete from another. Two matings are necessary to produce viable offspring.](image)

![Figure 18.17 These two related frog species exhibit temporal reproductive isolation. (a) Rana aurora breeds earlier in the year than (b) Rana boylii. (credit a: modification of work by Mark R. Jennings, USFWS; credit b: modification of work by Alessandro Catenazzi)](image)
In some cases, populations of a species move or are moved to a new habitat and take up residence in a place that no longer overlaps with the other populations of the same species. This situation is called **habitat isolation**. Reproduction with the parent species ceases, and a new group exists that is now reproductively and genetically independent. For example, a cricket population that was divided after a flood could no longer interact with each other. Over time, the forces of natural selection, mutation, and genetic drift will likely result in the divergence of the two groups (Figure 18.18).

![Figure 18.18 Speciation can occur when two populations occupy different habitats. The habitats need not be far apart. The cricket (a) *Gryllus pennsylvanicus* prefers sandy soil, and the cricket (b) *Gryllus firmus* prefers loamy soil. The two species can live in close proximity, but because of their different soil preferences, they became genetically isolated.](image)

Behavioral isolation occurs when the presence or absence of a specific behavior prevents reproduction from taking place. For example, male fireflies use specific light patterns to attract females. Various species of fireflies display their lights differently. If a male of one species tried to attract the female of another, she would not recognize the light pattern and would not mate with the male.

Other prezygotic barriers work when differences in their gamete cells (eggs and sperm) prevent fertilization from taking place; this is called a **gametic barrier**. Similarly, in some cases closely related organisms try to mate, but their reproductive structures simply do not fit together. For example, damselfly males of different species have differently shaped reproductive organs. If one species tries to mate with the female of another, their body parts simply do not fit together. (Figure 18.19).

![Figure 18.19 The shape of the male reproductive organ varies among male damselfly species, and is only compatible with the female of that species. Reproductive organ incompatibility keeps the species reproductively isolated.](image)

In plants, certain structures aimed to attract one type of pollinator simultaneously prevent a different pollinator from accessing the pollen. The tunnel through which an animal must access nectar can vary widely in length and diameter, which prevents the plant from being cross-pollinated with a different species (Figure 18.20).

![Figure 18.20 Some flowers have evolved to attract certain pollinators. The (a) wide foxglove flower is adapted for pollination by bees, while the (b) long, tube-shaped trumpet creeper flower is adapted for pollination by humming birds.](image)

When fertilization takes place and a zygote forms, postzygotic barriers can prevent reproduction. Hybrid individuals in many cases cannot form normally in the womb and simply do not survive past the embryonic stages. This is called **hybrid**
inviability because the hybrid organisms simply are not viable. In another postzygotic situation, reproduction leads to the birth and growth of a hybrid that is sterile and unable to reproduce offspring of their own; this is called hybrid sterility.

Habitat Influence on Speciation

Sympatric speciation may also take place in ways other than polyploidy. For example, consider a species of fish that lives in a lake. As the population grows, competition for food also grows. Under pressure to find food, suppose that a group of these fish had the genetic flexibility to discover and feed off another resource that was unused by the other fish. What if this new food source was found at a different depth of the lake? Over time, those feeding on the second food source would interact more with each other than the other fish; therefore, they would breed together as well. Offspring of these fish would likely behave as their parents: feeding and living in the same area and keeping separate from the original population. If this group of fish continued to remain separate from the first population, eventually sympatric speciation might occur as more genetic differences accumulated between them.

This scenario does play out in nature, as do others that lead to reproductive isolation. One such place is Lake Victoria in Africa, famous for its sympatric speciation of cichlid fish. Researchers have found hundreds of sympatric speciation events in these fish, which have not only happened in great number, but also over a short period of time. **Figure 18.21** shows this type of speciation among a cichlid fish population in Nicaragua. In this locale, two types of cichlids live in the same geographic location but have come to have different morphologies that allow them to eat various food sources.

Figure 18.21 Cichlid fish from Lake Apoyeque, Nicaragua, show evidence of sympatric speciation. Lake Apoyeque, a crater lake, is 1800 years old, but genetic evidence indicates that the lake was populated only 100 years ago by a single population of cichlid fish. Nevertheless, two populations with distinct morphologies and diets now exist in the lake, and scientists believe these populations may be in an early stage of speciation.

18.3 | Reconnection and Rates of Speciation

By the end of this section, you will be able to:

- Describe pathways of species evolution in hybrid zones
- Explain the two major theories on rates of speciation

Speciation occurs over a span of evolutionary time, so when a new species arises, there is a transition period during which the closely related species continue to interact.

Reconnection

After speciation, two species may recombine or even continue interacting indefinitely. Individual organisms will mate with any nearby individual who they are capable of breeding with. An area where two closely related species continue to interact and reproduce, forming hybrids, is called a hybrid zone. Over time, the hybrid zone may change depending on the fitness of the hybrids and the reproductive barriers (**Figure 18.22**). If the hybrids are less fit than the parents, reinforcement of speciation occurs, and the species continue to diverge until they can no longer mate and produce viable offspring. If reproductive barriers weaken, fusion occurs and the two species become one. Barriers remain the same if hybrids are fit and reproductive: stability may occur and hybridization continues.
After speciation has occurred, the two separate but closely related species may continue to produce offspring in an area called the hybrid zone. Reinforcement, fusion, or stability may result, depending on reproductive barriers and the relative fitness of the hybrids.

If two species eat a different diet but one of the food sources is eliminated and both species are forced to eat the same foods, what change in the hybrid zone is most likely to occur?

Hybrids can be either less fit than the parents, more fit, or about the same. Usually hybrids tend to be less fit; therefore, such reproduction diminishes over time, nudging the two species to diverge further in a process called reinforcement. This term is used because the low success of the hybrids reinforces the original speciation. If the hybrids are as fit or more fit than the parents, the two species may fuse back into one species (Figure 18.23). Scientists have also observed that sometimes two species will remain separate but also continue to interact to produce some hybrid individuals; this is classified as stability because no real net change is taking place.

Varying Rates of Speciation

Scientists around the world study speciation, documenting observations both of living organisms and those found in the fossil record. As their ideas take shape and as research reveals new details about how life evolves, they develop models to help explain rates of speciation. In terms of how quickly speciation occurs, two patterns are currently observed: gradual speciation model and punctuated equilibrium model.

In the **gradual speciation model**, species diverge gradually over time in small steps. In the **punctuated equilibrium model**, a new species undergoes changes quickly from the parent species, and then remains largely unchanged for long periods of time afterward (Figure 18.23). This early change model is called punctuated equilibrium, because it begins with a punctuated or periodic change and then remains in balance afterward. While punctuated equilibrium suggests a faster tempo, it does not necessarily exclude gradualism.
In (a) gradual speciation, species diverge at a slow, steady pace as traits change incrementally. In (b) punctuated equilibrium, species diverge quickly and then remain unchanged for long periods of time.

Which of the following statements is false?

a. Punctuated equilibrium is most likely to occur in a small population that experiences a rapid change in its environment.

b. Punctuated equilibrium is most likely to occur in a large population that lives in a stable climate.

c. Gradual speciation is most likely to occur in species that live in a stable climate.

d. Gradual speciation and punctuated equilibrium both result in the divergence of species.

The primary influencing factor on changes in speciation rate is environmental conditions. Under some conditions, selection occurs quickly or radically. Consider a species of snails that had been living with the same basic form for many thousands of years. Layers of their fossils would appear similar for a long time. When a change in the environment takes place—such as a drop in the water level—a small number of organisms are separated from the rest in a brief period of time, essentially forming one large and one tiny population. The tiny population faces new environmental conditions. Because its gene pool quickly became so small, any variation that surfaces and that aids in surviving the new conditions becomes the predominant form.

Visit this website (http://openstaxcollege.org/l/snails) to continue the speciation story of the snails.
KEY TERMS

adaptation heritable trait or behavior in an organism that aids in its survival and reproduction in its present environment

adaptive radiation speciation when one species radiates out to form several other species

allopatric speciation speciation that occurs via geographic separation

allopolyploid polyploidy formed between two related, but separate species

aneuploidy condition of a cell having an extra chromosome or missing a chromosome for its species

autopolyploid polyploidy formed within a single species

behavioral isolation type of reproductive isolation that occurs when a specific behavior or lack of one prevents reproduction from taking place

convergent evolution process by which groups of organisms independently evolve to similar forms

dispersal allopatric speciation that occurs when a few members of a species move to a new geographical area

divergent evolution process by which groups of organisms evolve in diverse directions from a common point

gametic barrier prezygotic barrier occurring when closely related individuals of different species mate, but differences in their gamete cells (eggs and sperm) prevent fertilization from taking place

gradual speciation model model that shows how species diverge gradually over time in small steps

habitat isolation reproductive isolation resulting when populations of a species move or are moved to a new habitat, taking up residence in a place that no longer overlaps with the other populations of the same species

homologous structures parallel structures in diverse organisms that have a common ancestor

hybrid offspring of two closely related individuals, not of the same species

hybrid zone area where two closely related species continue to interact and reproduce, forming hybrids

natural selection reproduction of individuals with favorable genetic traits that survive environmental change because of those traits, leading to evolutionary change

postzygotic barrier reproductive isolation mechanism that occurs after zygote formation

prezygotic barrier reproductive isolation mechanism that occurs before zygote formation

punctuated equilibrium model for rapid speciation that can occur when an event causes a small portion of a population to be cut off from the rest of the population

reinforcement continued speciation divergence between two related species due to low fitness of hybrids between them

reproductive isolation situation that occurs when a species is reproductively independent from other species; this may be brought about by behavior, location, or reproductive barriers

speciation formation of a new species

species group of populations that interbreed and produce fertile offspring

sympatric speciation speciation that occurs in the same geographic space

temporal isolation differences in breeding schedules that can act as a form of prezygotic barrier leading to reproductive isolation

variation genetic differences among individuals in a population
vestigial structure physical structure present in an organism but that has no apparent function and appears to be from a functional structure in a distant ancestor

vicariance allopatric speciation that occurs when something in the environment separates organisms of the same species into separate groups

CHAPTER SUMMARY

18.1 Understanding Evolution

Evolution is the process of adaptation through mutation which allows more desirable characteristics to be passed to the next generation. Over time, organisms evolve more characteristics that are beneficial to their survival. For living organisms to adapt and change to environmental pressures, genetic variation must be present. With genetic variation, individuals have differences in form and function that allow some to survive certain conditions better than others. These organisms pass their favorable traits to their offspring. Eventually, environments change, and what was once a desirable, advantageous trait may become an undesirable trait and organisms may further evolve. Evolution may be convergent with similar traits evolving in multiple species or divergent with diverse traits evolving in multiple species that came from a common ancestor. Evidence of evolution can be observed by means of DNA code and the fossil record, and also by the existence of homologous and vestigial structures.

18.2 Formation of New Species

Speciation occurs along two main pathways: geographic separation (allopatric speciation) and through mechanisms that occur within a shared habitat (sympatric speciation). Both pathways isolate a population reproductively in some form. Mechanisms of reproductive isolation act as barriers between closely related species, enabling them to diverge and exist as genetically independent species. Prezygotic barriers block reproduction prior to formation of a zygote, whereas postzygotic barriers block reproduction after fertilization occurs. For a new species to develop, something must cause a breach in the reproductive barriers. Sympatric speciation can occur through errors in meiosis that form gametes with extra chromosomes (polyploidy). Autopolyploidy occurs within a single species, whereas allopolyploidy occurs between closely related species.

18.3 Reconnection and Rates of Speciation

Speciation is not a precise division: overlap between closely related species can occur in areas called hybrid zones. Organisms reproduce with other similar organisms. The fitness of these hybrid offspring can affect the evolutionary path of the two species. Scientists propose two models for the rate of speciation: one model illustrates how a species can change slowly over time; the other model demonstrates how change can occur quickly from a parent generation to a new species. Both models continue to follow the patterns of natural selection.

ART CONNECTION QUESTIONS

1. **Figure 18.14** Which is most likely to survive, offspring with $2n+1$ chromosomes or offspring with $2n-1$ chromosomes?

2. **Figure 18.22** If two species eat a different diet but one of the food sources is eliminated and both species are forced to eat the same foods, what change in the hybrid zone is most likely to occur?

3. **Figure 18.23** Which of the following statements is false?

 a. Punctuated equilibrium is most likely to occur in a small population that experiences a rapid change in its environment.
 b. Punctuated equilibrium is most likely to occur in a large population that lives in a stable climate.
 c. Gradual speciation is most likely to occur in species that live in a stable climate.
 d. Gradual speciation and punctuated equilibrium both result in the evolution of new species.

REVIEW QUESTIONS

4. Which scientific concept did Charles Darwin and Alfred Wallace independently discover?
 a. mutation
 b. natural selection
 c. overbreeding
 d. sexual reproduction

5. Which of the following situations will lead to natural selection?
 a. The seeds of two plants land near each other and one grows larger than the other.
b. Two types of fish eat the same kind of food, and one is better able to gather food than the other.

c. Male lions compete for the right to mate with females, with only one possible winner.

d. all of the above

6. Which description is an example of a phenotype?

a. A certain duck has a blue beak.

b. A mutation occurred to a flower.

c. Most cheetahs live solitary lives.

d. both a and c

7. Which situation is most likely an example of convergent evolution?

a. Squid and humans have eyes similar in structure.

b. Worms and snakes both move without legs.

c. Some bats and birds have wings that allow them to fly.

d. all of the above

8. Which situation would most likely lead to allopatric speciation?

a. flood causes the formation of a new lake.

b. A storm causes several large trees to fall down.

c. A mutation causes a new trait to develop.

d. An injury causes an organism to seek out a new food source.

9. What is the main difference between dispersal and vicariance?

a. One leads to allopatric speciation, whereas the other leads to sympatric speciation.

b. One involves the movement of the organism, and the other involves a change in the environment.

c. One depends on a genetic mutation occurring, and the other does not.

d. One involves closely related organisms, and the other involves only individuals of the same species.

10. Which variable increases the likelihood of allopatric speciation taking place more quickly?

a. lower rate of mutation

b. longer distance between divided groups

c. increased instances of hybrid formation

d. equivalent numbers of individuals in each population

11. What is the main difference between autopolyploid and allopolyploid?

12. Which reproductive combination produces hybrids?

a. when individuals of the same species in different geographical areas reproduce

b. when any two individuals sharing the same habitat reproduce

c. when members of closely related species reproduce

d. when offspring of the same parents reproduce

13. Which condition is the basis for a species to be reproductively isolated from other members?

a. It does not share its habitat with related species.

b. It does not exist out of a single habitat.

c. It does not exchange genetic information with other species.

d. It does not undergo evolutionary changes for a significant period of time.

14. Which situation is not an example of a prezygotic barrier?

a. Two species of turtles breed at different times of the year.

b. Two species of flowers attract different pollinators.

c. Two species of birds display different mating dances.

d. Two species of insects produce infertile offspring.

15. Which term is used to describe the continued divergence of species based on the low fitness of hybrid offspring?

a. reinforcement

b. fusion

c. stability

d. punctuated equilibrium

16. Which components of speciation would be least likely to be a part of punctuated equilibrium?

a. a division of populations

b. a change in environmental conditions

c. ongoing gene flow among all individuals

d. a large number of mutations taking place at once

CRITICAL THINKING QUESTIONS

17. If a person scatters a handful of garden pea plant seeds in one area, how would natural selection work in this situation?

18. Why do scientists consider vestigial structures evidence for evolution?

19. How does the scientific meaning of “theory” differ from the common vernacular meaning?

20. Explain why the statement that a monkey is more evolved than a mouse is incorrect.

21. Why do island chains provide ideal conditions for adaptive radiation to occur?
22. Two species of fish had recently undergone sympatric speciation. The males of each species had a different coloring through which the females could identify and choose a partner from her own species. After some time, pollution made the lake so cloudy that it was hard for females to distinguish colors. What might take place in this situation?

23. Why can polyploid individuals lead to speciation fairly quickly?

24. What do both rate of speciation models have in common?

25. Describe a situation where hybrid reproduction would cause two species to fuse into one.