Chapter 1

1 Figure 1.6 1: C; 2: F; 3: A; 4: B; 5: D; 6: E. The original hypothesis is incorrect, as the coffeemaker works when plugged into the outlet. Alternative hypotheses include that the toaster might be broken or that the toaster wasn’t turned on. 3 Figure 1.16 Communities exist within populations which exist within ecosystems. 4 B 6 D 8 C 10 C 12 B 14 D 16 Answers will vary, but should apply the steps of the scientific method. One possibility could be a car which doesn’t start. The hypothesis could be that the car doesn’t start because the battery is dead. The experiment would be to change the battery or to charge the battery and then check whether the car starts or not. If it starts, the problem was due to the battery, and the hypothesis is accepted. 18 Answers will vary. Topics that fall inside the area of biological study include how diseases affect human bodies, how pollution impacts a species’ habitat, and how plants respond to their environments. Topics that fall outside of biology (the “study of life”) include how metamorphic rock is formed and how planetary orbits function. 20 Answers will vary. Layers of sedimentary rock have order but are not alive. Technology is capable of regulation but is not, of itself, alive. 22 During your walk, you may begin to perspire, which cools your body and helps your body to maintain a constant internal temperature. You might also become thirsty and pause long enough for a cool drink, which will help to restore the water lost during perspiration.

Chapter 2

1 Figure 2.3 Carbon-12 has six neutrons. Carbon-13 has seven neutrons. 3 Figure 2.24 C 4 A 6 C 8 D 10 C 12 D 14 Ionic bonds are created between ions. The electrons are not shared between the atoms, but rather are associated more with one ion than the other. Ionic bonds are strong bonds, but are weaker than covalent bonds, meaning it takes less energy to break an ionic bond compared with a covalent one. 16 Buffers absorb the free hydrogen ions and hydroxide ions that result from chemical reactions. Because they can bond these ions, they prevent increases or decreases in pH. An example of a buffer system is the bicarbonate system in the human body. This system is able to absorb hydrogen and hydroxide ions to prevent changes in pH and keep cells functioning properly. 18 Carbon is unique and found in all living things because it can form up to four covalent bonds between atoms or molecules. These can be nonpolar or polar covalent bonds, and they allow for the formation of long chains of carbon molecules that combine to form proteins and DNA.

Chapter 3

1 Figure 3.5 Glucose and galactose are aldoses. Fructose is a ketose. 3 Figure 3.33 Adenine is larger than cytosine and will not be able to base pair properly with the guanine on the opposing strand. This will cause the DNA to bulge. DNA repair enzymes may recognize the bulge and replace the incorrect nucleotide. 4 C 6 D 8 B 10 D 12 C 14 C 16 Biological macromolecules are organic because they contain carbon. 18 Glycogen and starch are polysaccharides. They are the storage form of glucose. Glycogen is stored in animals in the liver and in muscle cells, whereas starch is stored in the roots, seeds, and leaves of plants. Starch has two different forms, one unbranched (amylose) and one branched (amylopectin), whereas glycogen is a single type of a highly branched molecule. 20 Fat serves as a valuable way for animals to store energy. It can also provide insulation. Waxes can protect plant leaves and mammalian fur from getting wet. Phospholipids and steroids are important components of animal cell membranes, as well as plant, fungal, and bacterial membranes. 22 A change in gene sequence can lead to a different amino acid being added to a polypeptide chain instead of the normal one. This causes a change in protein structure and function. For example, in sickle cell anemia, the hemoglobin β chain has a single amino acid substitution—the amino acid glutamic acid in position six is substituted by valine. Because of this change, hemoglobin molecules form aggregates, and the disc-shaped red blood cells assume a crescent shape, which results in serious health problems. 24 DNA has a double-helix structure. The sugar and the phosphate are on the outside of the helix and the nitrogenous bases are in the interior. The monomers of DNA are nucleotides containing deoxyribose, one of the four nitrogenous bases (A, T, G and C), and a phosphate group. RNA is usually single-stranded and is made of ribonucleotides that are linked by phosphodiester linkages. A ribonucleotide contains ribose (the pentose sugar), one of the four nitrogenous bases (A, U, G, and C), and the phosphate group.

Chapter 4

1 Figure 4.7 Substances can diffuse more quickly through small cells. Small cells have no need for organelles and therefore do not need to expend energy getting substances across organelle membranes. Large cells have organelles that can separate cellular processes, enabling them to build molecules that are more complex. 3 Figure 4.18 It would end up on the outside. After the vesicle passes through the Golgi apparatus and fuses with the plasma membrane, it turns inside out. 4 C 6 D 8 D 10 A 12 A 14 C 16 B 18 C 20 A light microscope would be ideal when viewing a small living organism, especially when the cell has been stained to reveal details. 22 A transmission electron microscope would be ideal for viewing the cell’s internal structures, because many of the internal structures have membranes that are not visible by the light microscope. 24 The cell wall would be targeted by antibiotics as well as the bacteria’s ability to replicate. This would inhibit the bacteria’s ability to reproduce, and it would compromise its defense mechanisms. 26 Ribosomes are abundant in muscle cells as well because muscle cells are constructed of the proteins made by the ribosomes. 28 “Form follows function” refers to the idea that the function of a body part
dictates the form of that body part. As an example, compare your arm to a bat’s wing. While the bones of the two correspond, the parts serve different functions in each organism and their forms have adapted to follow that function. 30 Centrioles and flagella are alike in that they are made up of microtubules. In centrioles, two rings of nine microtubule “triplets” are arranged at right angles to one another. This arrangement does not occur in flagella. 32 They differ because plant cell walls are rigid. Plasmodesmata, which a plant cell needs for transportation and communication, are able to allow movement of really large molecules. Gap junctions are necessary in animal cells for transportation and communication.

Chapter 5

1 Figure 5.12 No, it must have been hypotonic as a hypotonic solution would cause water to enter the cells, thereby making them burst. 3 Figure 5.19 A decrease in pH means an increase in positively charged H\(^+\) ions, and an increase in the electrical gradient across the membrane. The transport of amino acids into the cell will increase. 4 A 6 A 8 C 10 D 12 D 14 B 16 The fluid characteristic of the cell membrane allows greater flexibility to the cell than it would if the membrane were rigid. It also allows the motion of membrane components, required for some types of membrane transport. 18 Heavy molecules move more slowly than lighter ones. It takes more energy in the medium to move them along. Increasing or decreasing temperature increases or decreases the energy in the medium, affecting molecular movement. The denser a solution is, the harder it is for molecules to move through it, causing diffusion to slow down due to friction. Living cells require a steady supply of nutrients and a steady rate of waste removal. If the distance these substances need to travel is too great, diffusion cannot move nutrients and waste materials efficiently to sustain life. 20 Injection of isotonic solutions ensures that there will be no perturbation of the osmotic balance, and no water taken from tissues or added to them from the blood. 22 The sodium-potassium pump forces out three (positive) Na\(^+\) ions for every two (positive) K\(^+\) ions it pumps in, thus the cell loses a positive charge at every cycle of the pump. 24 Ions are charged, and consequently, they are hydrophilic and cannot associate with the lipid portion of the membrane. Ions must be transported by carrier proteins or ion channels.

Chapter 6

1 Figure 6.8 A compost pile decomposing is an exergonic process; enthalpy increases (energy is released) and entropy increases (large molecules are broken down into smaller ones). A baby developing from a fertilized egg is an endergonic process; enthalpy decreases (energy is absorbed) and entropy decreases. Sand art being destroyed is an exergonic process; there is no change in enthalpy, but entropy increases. A ball rolling downhill is an exergonic process; enthalpy decreases (energy is released), but there is no change in entropy. 3 Figure 6.14 Three sodium ions could be moved by the hydrolysis of one ATP molecule. The ΔG of the coupled reaction must be negative. Movement of three sodium ions across the membrane will take 6.3 kcal of energy (2.1 kcal × 3 Na\(^+\) ions = 6.3 kcal). Hydrolysis of ATP provides 7.3 kcal of energy, more than enough to power this reaction. Movement of four sodium ions across the membrane, however, would require 8.4 kcal of energy, more than one ATP molecule can provide. 4 C 6 C 8 B 10 A 12 A 14 C 16 Physical exercise involves both anabolic and catabolic processes. Body cells break down sugars to provide ATP to do the work necessary for exercise, such as muscle contractions. This is catabolism. Muscle cells also must repair muscle tissue damaged by exercise by building new muscle. This is anabolism. 18 A spontaneous reaction is one that has a negative ΔG and thus releases energy. However, a spontaneous reaction need not occur quickly or suddenly like an instantaneous reaction. It may occur over long periods due to a large energy of activation, which prevents the reaction from occurring quickly. 20 The ant farm had lower entropy before the earthquake because it was a highly ordered system. After the earthquake, the system became much more disordered and had higher entropy. 22 The activation energy for hydrolysis is very low. Not only is ATP hydrolysis an exergonic process with a large −ΔG, but ATP is also a very unstable molecule that rapidly breaks down into ADP + P\(_i\). If not utilized quickly. This suggests a very low EA since it hydrolyzes so quickly. 24 Feedback inhibition allows cells to control the amounts of metabolic products produced. If there is too much of a particular product relative to what the cell’s needs, feedback inhibition effectively causes the cell to decrease production of that particular product. In general, this reduces the production of superfluous products and conserves energy, maximizing energy efficiency.

Chapter 7

1 Figure 7.11 After DNP poisoning, the electron transport chain can no longer form a proton gradient, and ATP synthase can no longer make ATP. DNP is an effective diet drug because it uncouples ATP synthesis; in other words, after taking it, a person obtains less energy out of the food he or she eats. Interestingly, one of the worst side effects of this drug is hyperthermia, or overheating of the body. Since ATP cannot be formed, the energy from electron transport is lost as heat. 3 Figure 7.14 The illness is caused by lactate accumulation. Lactate levels rise after exercise, making the symptoms worse. Milk sickness is rare today, but was common in the Midwestern United States in the early 1800s. 4 A 6 C 8 B 10 C 12 C 14 A 16 A 18 ATP provides the cell with a way to handle energy in an efficient manner. The molecule can be charged, stored, and used as needed. Moreover, the energy from hydrolyzing ATP is delivered as a consistent amount. Harvesting energy from the bonds of several different compounds would result in energy deliveries of different quantities. 20 All cells must consume energy to carry out basic functions, such as pumping ions across membranes. A red blood cell would lose its membrane potential if glycolysis were blocked, and it would eventually die. 22 Q and cytochrome c are transport molecules. Their function does not result directly in ATP synthesis in that they are not pumps. Moreover, Q is the only component of the electron transport chain that is not a protein. Ubiquinone and cytochrome c are small, mobile, electron carriers, whereas the other components of the electron transport chain are large complexes anchored.
in the inner mitochondrial membrane. 24 Fermentation uses glycolysis only. Anaerobic respiration uses all three parts of cellular respiration, including the parts in the mitochondria like the citric acid cycle and electron transport; it also uses a different final electron acceptor instead of oxygen gas. 26 Citrate can inhibit phosphofructokinase by feedback regulation.

Chapter 8

1 Figure 8.6 Levels of carbon dioxide (a necessary photosynthetic substrate) will immediately fall. As a result, the rate of photosynthesis will be inhibited. 3 Figure 8.18 D 4 A 6 B 8 A 10 C 12 D 14 C 16 The outcome of light reactions in photosynthesis is the conversion of solar energy into chemical energy that the chloroplasts can use to do work (mostly anabolic production of carbohydrates from carbon dioxide). 18 The energy carriers that move from the light-dependent reaction to the light-independent one are “full” because they bring energy. After the energy is released, the “empty” energy carriers return to the light-dependent reaction to obtain more energy. There is not much actual movement involved. Both ATP and NADPH are produced in the stroma where they are also used and reconverted into ADP, Pi, and NADP$. 20 Both of these molecules carry energy; in the case of NADPH, it has reducing power that is used to fuel the process of making carbohydrate molecules in light-independent reactions. 22 None of the cycle could take place, because RuBisCO is essential in fixing carbon dioxide. Specifically, RuBisCO catalyzes the reaction between carbon dioxide and RuBP at the start of the cycle.

Chapter 9

1 Figure 9.8 C. The downstream cellular response would be inhibited. 3 Figure 9.17 C. 5 B 7 B 9 D 11 B 13 D 15 C. 17 Intracellular signaling occurs within a cell, and intercellular signaling occurs between cells. 19 Internal receptors are located inside the cell, and their ligands enter the cell to bind the receptor. The complex formed by the internal receptor and the ligand then enters the nucleus and directly affects protein production by binding to the chromosomal DNA and initiating the making of mRNA that codes for proteins. Cell-surface receptors, however, are embedded in the plasma membrane, and their ligands do not enter the cell. Binding of the ligand to the cell-surface receptor initiates a cell signaling cascade and does not directly influence the making of proteins; however, it may involve the activation of intracellular proteins. 21 Different cells produce different proteins, including cell-surface receptors and signaling pathway components. Therefore, they respond to different ligands, and the second messengers activate different pathways. Signal integration can also change the end result of signaling. 23 If a kinase is mutated so that it is always activated, it will continuously signal through the pathway and lead to uncontrolled growth and possibly cancer. If a kinase is mutated so that it cannot function, the cell will not respond to ligand binding. 25 Yeasts are eukaryotes and have many of the same systems that humans do; however, they are single-celled, so they are easy to grow, grow rapidly, have a short generation time, and are much simpler than humans.

Chapter 10

1 Figure 10.6 D. The kinetochore becomes attached to the mitotic spindle. Sister chromatids line up at the metaphase plate. Cohesin proteins break down and the sister chromatids separate. The nucleus reforms and the cell divides. 3 Figure 10.14 D. E6 binding marks p53 for degradation. 4 C 6 D 8 B 10 B 12 D 14 A 16 A 18 D 20 C 22 C 24 D 26 C 28 Human somatic cells have 46 chromosomes: 22 pairs and 2 sex chromosomes that may or may not form a pair. This is the 2n or diploid condition. Human gametes have 23 chromosomes, one each of 23 unique chromosomes, one of which is a sex chromosome. This is the n or haploid condition. 30 The DNA double helix is wrapped around histone proteins to form structures called nucleosomes. Nucleosomes and the linker DNA in between them are coiled into a 30-nm fiber. During cell division, chromatin is further condensed by packing proteins. 32 The mitotic spindle is formed of microtubules. Microtubules are polymers of the protein tubulin; therefore, it is the mitotic spindle that is disrupted by these drugs. Without a functional mitotic spindle, the chromosomes will not be sorted or separated during mitosis. The cell will arrest in mitosis and die. 34 Many cells temporarily enter G0 until they reach maturity. Some cells are only triggered to enter G1 when the organism needs to increase that particular cell type. Some cells only reproduce following an injury to the tissue. Some cells never divide once they reach maturity. 36 The G1 checkpoint monitors adequate cell growth, the state of the genomic DNA, adequate stores of energy, and materials for S phase. At the G2 checkpoint, DNA is checked to ensure that all chromosomes were duplicated and that there are no mistakes in newly synthesized DNA. Additionally, cell size and energy reserves are evaluated. The M checkpoint confirms the correct attachment of the mitotic spindle fibers to the kinetochores. 38 Cdk must bind to a cyclin, and it must be phosphorylated in the correct position to become fully active. 40 If one of the genes that produces regulator proteins becomes mutated, it produces a malformed, possibly non-functional, cell cycle regulator, increasing the chance that more mutations will be left un repaired in the cell. Each subsequent generation of cells sustains more damage. The cell cycle can speed up as a result of the loss of functional checkpoint proteins. The cells can lose the ability to self-destruct and eventually become “immortalized.” 42 Regulatory mechanisms that might be lost include monitoring of the quality of the genomic DNA, recruiting of repair enzymes, and the triggering of apoptosis. 44 The common components of eukaryotic cell division and binary fission are DNA duplication, segregation of duplicated chromosomes, and division of the cytoplasmic contents.
Chapter 11

1 Figure 11.9 Yes, it will be able to reproduce asexually. 2 C 4 D 6 C 8 C 10 C 12 B 14 During the meiotic interphase, each chromosome is duplicated. The sister chromatids that are formed during synthesis are held together at the centromere region by cohesin proteins. All chromosomes are attached to the nuclear envelope by their tips. As the cell enters prophase I, the nuclear envelope begins to fragment, and the proteins holding homologous chromosomes locate each other. The four sister chromatids align lengthwise, and a protein lattice called the synaptonemal complex is formed between them to bind them together. The synaptonemal complex facilitates crossover between non-sister chromatids, which is observed as chiasmas along the length of the chromosome. As prophase I progresses, the synaptonemal complex breaks down and the sister chromatids become free, except where they are attached by chiasmata. At this stage, the four chromatids are visible in each homologous pairing and are called a tetrad. 16 In metaphase I, the homologous chromosomes line up at the metaphase plate. In anaphase I, the homologous chromosomes are pulled apart and move to opposite poles. Sister chromatids are not separated until meiosis II. The fused kinechore formed during meiosis I ensures that each spindle microtubule that binds to the tetrad will attach to both sister chromatids. 18 A. Crossover occurs in prophase I between non-sister homologous chromosomes. Segments of DNA are exchanged between maternally derived and paternally derived chromosomes, and new gene combinations are formed. B. Random alignment during metaphase I leads to gametes that have a mixture of maternal and paternal chromosomes. C. Fertilization is random, in that any two gametes can fuse.

Chapter 12

1 Figure 12.5 You cannot be sure if the plant is homozygous or heterozygous as the data set is too small: by random chance, all three plants might have acquired only the dominant gene even if the recessive one is present. If the round pea parent is heterozygous, there is a one-eighth probability that a random sample of three progeny peas will all be round. 3 Figure 12.12 Half of the female offspring would be heterozygous (X^WX^w) with red eyes, and half would be homozygous recessive (X^wX^w) with white eyes. Half of the male offspring would be hemizygous dominant (X^WY) with red yes, and half would be hemizygous recessive (X^wY) with white eyes. 5 A 7 B 9 A 11 D 13 C 15 B 17 The garden pea is sessile and has flowers that close tightly during self-pollination. These features help to prevent accidental or unintentional fertilizations that could have diminished the accuracy of Mendel’s data. 19 Because axial is dominant, the gene would be designated as A. F1 would be all heterozygous Aa with axial phenotype. F2 would have possible genotypes of AA, Aa, and aa; these would correspond to axial, axial, and terminal phenotypes, respectively. 21 No, males can only express color blindness. They cannot carry it because an individual needs two X chromosomes to be a carrier. 23 Epistasis describes an antagonistic interaction between genes wherein one gene masks or interferes with the expression of another. The gene that is interfering is referred to as epistatic, as if it is “standing upon” the other (hypostatic) gene to block its expression.

Chapter 13

1 Figure 13.3 No. The predicted frequency of recombinant offspring ranges from 0% (for linked traits) to 50% (for unlinked traits). 3 Figure 13.6 B. 4 A 6 C 8 B 10 C 12 D 14 The Chromosomal Theory of Inheritance proposed that genes reside on chromosomes. The understanding that chromosomes are linear arrays of genes explained linkage, and crossing over explained recombination.

Chapter 14

1 Figure 14.10 Compartmentalization enables a eukaryotic cell to divide processes into discrete steps so it can build more complex protein and RNA products. But there is an advantage to having a single compartment as well: RNA and protein synthesis occurs much more quickly in a procaryotic cell. 3 Figure 14.21 If three nucleotides are added, one additional amino acid will be incorporated into the protein chain, but the reading frame will not shift. 4 C 6 D 8 B 10 D 12 A 14 C 16 Live R cells acquired genetic information from the heat-killed S cells that “transformed” the R cells into S cells. 18 The template DNA strand is mixed with a DNA polymerase, a primer, the 4 deoxynucleotides, and a limiting concentration of 4 dideoxynucleotides. DNA polymerase synthesizes a strand complementary to the template. Incorporation of ddNTPs at different locations results in DNA fragments that have terminated at every possible base in the template. These fragments are separated by gel electrophoresis and visualized by a laser detector to determine the sequence of bases. 20 Meselson’s experiments with E. coli grown in 15N deduced this finding. 22 Short DNA fragments are formed on the lagging strand synthesized in a direction away from the replication fork. These are synthesized by DNA pol. 24 At the replication fork, the events taking place are helicase action, binding of single-strand binding proteins, primer synthesis, and synthesis of new strands. If there is a mutated helicase gene, the replication fork will not be extended. 26 Telomerase has an inbuilt RNA template that extends the 3’ end, so primer is synthesized and extended. Thus, the ends are protected.
Chapter 15

1 Figure 15.11 No. Prokaryotes use different promoters than eukaryotes. 3 Figure 15.16 Tetracycline: a; Chloramphenicol: c. 4 D 6 D 8 B 10 D 12 C 14 For 200 commonly occurring amino acids, codons consisting of four types of nucleotides would have to be at least four nucleotides long, because $4^4 = 256$. There would be much less degeneracy in this case. 16 DNA is different from RNA in that T nucleotides in DNA are replaced with U nucleotides in RNA. Therefore, they could never be identical in base sequence. 18 The mRNA would be: 5'-AUGGCGGGUUAUUAAGCA-3'. The protein would be: MAGY. Even though there are six codons, the fifth codon corresponds to a stop, so the sixth codon would not be translated.

Chapter 16

1 Figure 16.5 Tryptophan is an amino acid essential for making proteins, so the cell always needs to have some on hand. However, if plenty of tryptophan is present, it is wasteful to make more, and the expression of the trp receptor is repressed. Lactose, a sugar found in milk, is not always available. It makes no sense to make the enzymes necessary to digest an energy source that is not available, so the lac operon is only turned on when lactose is present. 3 Figure 16.13 Protein synthesis would be inhibited. 4 D 6 B 8 A 10 C 12 D 14 A 16 C 17 Eukaryotic cells have a nucleus, whereas prokaryotic cells do not. In eukaryotic cells, DNA is confined within the nuclear region. Because of this, transcription and translation are physically separated. This creates a more complex mechanism for the control of gene expression that benefits multicellular organisms because it compartmentalizes gene regulation. Gene expression occurs at many stages in eukaryotic cells, whereas in prokaryotic cells, control of gene expression only occurs at the transcriptional level. This allows for greater control of gene expression in eukaryotes and more complex systems to be developed. Because of this, different cell types can arise in an individual organism. 19 Environmental stimuli can increase or induce transcription in prokaryotic cells. In this example, lactose in the environment will induce the transcription of the lac operon, but only if glucose is not available in the environment. 21 You can create medications that reverse the epigenetic processes (to add histone acetylation marks or to remove DNA methylation) and create an open chromosomal configuration. 23 If too much of an activating transcription factor were present, then transcription would be increased in the cell. This could lead to dramatic alterations in cell function. 25 External stimuli can modify RNA-binding proteins (i.e., through phosphorylation of proteins) to alter their activity. 27 If the RNA degraded, then less of the protein that the RNA encodes would be translated. This could have dramatic implications for the cell. 29 These drugs will keep the histone proteins and the DNA methylation patterns in the open chromosomal configuration so that transcription is feasible. If a gene is silenced, these drugs could reverse the epigenetic configuration to re-express the gene.

Chapter 17

1 Figure 17.6 B. The experiment would result in blue colonies only. 3 Figure 17.15 There are no right or wrong answers to these questions. While it is true that prostate cancer treatment itself can be harmful, many men would rather be aware that they have cancer so they can monitor the disease and begin treatment if it progresses. And while genetic screening may be useful, it is expensive and may cause needless worry. People with certain risk factors may never develop the disease, and preventative treatments may do more harm than good. 4 B 6 B 8 D 10 B 12 A 14 A 16 D 18 D 20 B 22 Southern blotting is the transfer of DNA that has been enzymatically cut into fragments and run on an agarose gel onto a nylon membrane. The DNA fragments that are on the nylon membrane can be denatured to make them single-stranded, and then probed with small DNA fragments that are radioactively or fluorescently labeled, to detect the presence of specific sequences. An example of the use of Southern blotting would be in analyzing the presence, absence, or variation of a disease gene in genomic DNA from a group of patients. 24 By identifying an herbicide resistance gene and cloning it into a plant expression vector system, like the Ti plasmid system from Agrobacterium tumefaciens. The scientist would then introduce it into the plant cells by transformation, and select cells that have taken up and integrated the herbicide-resistance gene into the genome. 26 Genome mapping has many different applications and provides comprehensive information that can be used for predictive purposes. 28 Metagenomics is revolutionary because it replaced the practice of using pure cultures. Pure cultures were used to study individual species in the laboratory, but did not accurately represent what happens in the environment. Metagenomics studies the genomes of bacterial populations in their environmental niche. 30 Proteomics has provided a way to detect biomarkers and protein signatures, which have been used to screen for the early detection of cancer.

Chapter 18

1 Figure 18.14 Loss of genetic material is almost always lethal, so offsprings with 2n+1 chromosomes are more likely to survive. 3 Figure 18.23 Answer B 4 B 6 D 9 A 10 B 12 C 14 D 16 C 17 The plants that can best use the resources of the area, including competing with other individuals for those resources will produce more seeds themselves and those traits that allowed them to better use the resources will increase in the population of the next generation. 19 In science, a theory is a thoroughly tested and verified set of explanations for a body of observations of nature. It is the strongest form of knowledge in science. In contrast, a theory in common vernacular can mean a guess or speculation about something, meaning that the knowledge implied by the theory is very weak. 21 Organisms of one species can arrive to an island together and then disperse throughout the chain, each settling into different niches and exploiting different food resources to reduce competition. 23 The formation of gametes with new n numbers can occur in one generation. After a couple of generations, enough of these new hybrids can form to reproduce together
as a new species. 25 If the hybrid offspring are as fit or more fit than the parents, reproduction would likely continue between both species and the hybrids, eventually bringing all organisms under the umbrella of one species.

Chapter 19

1 Figure 19.2 The expected distribution is 320 VV, 160Vv, and 20 vv plants. Plants with VV or Vv genotypes would have violet flowers, and plants with the vv genotype would have white flowers, so a total of 480 plants would be expected to have violet flowers, and 20 plants would have white flowers. 3 Figure 19.8 Moths have shifted to a lighter color. 4 C 6 D 8 C 10 A 12 D 14 A 16 p = (8*2 + 4)/48 = .42; q = (12*2 + 4)/48 = .58; p^2 = .17; 2pq = .48; q^2 = .34 18 Red is recessive so q^2 = 200/800 = 0.25; q = 0.5; p = 1-q = 0.5; p^2 = 0.25; 2pq = 0.5. You would expect 200 homozygous blue flowers, 400 heterozygous blue flowers, and 200 red flowers. 20 The theory of natural selection stems from the observation that some individuals in a population survive longer and have more offspring than others: thus, more of their genes are passed to the next generation. For example, a big, powerful male gorilla is much more likely than a smaller, weaker one to become the population’s silverback: the pack’s leader who mates far more than the other males of the group. Therefore, the pack leader will father more offspring who share half of his genes and are likely to grow bigger and stronger like their father. Over time, the genes for bigger size will increase in frequency in the population, and the average body size, as a result, grow larger on average. 22 The peacock’s tail is a good example of the handicap principle. The tail, which makes the males more visible to predators and less able to escape, is clearly a disadvantage to the bird’s survival. But because it is a disadvantage, only the most fit males should be able to survive with it. Thus, the tail serves as an honest signal of quality to the females of the population; therefore, the male will earn more matings and greater reproductive success.

Chapter 20

1 Figure 20.6 Cats and dogs are part of the same group at five levels: both are in the domain Eukarya, the kingdom Animalia, the phylum Chordata, the class Mammalia, and the order Carnivora. 3 Figure 20.11 The largest clade encompasses the entire tree. 4 C 6 D 8 C 10 B 12 C 14 A 16 The phylogenetic tree shows the order in which evolutionary events took place and in what order certain characteristics and organisms evolved in relation to others. It does not relate to time. 18 domain, kingdom, phylum, class, order, family, genus, species 20 Phylogenetic trees are based on evolutionary connections. If an analogous similarity were used on a tree, this would be erroneous and, furthermore, would cause the subsequent branches to be inaccurate. 22 Some hypotheses propose that mitochondria were acquired first, followed by the development of the nucleus. Others propose that the nucleus evolved first and that this new eukaryotic cell later acquired the mitochondria. Still others hypothesize that prokaryotes descended from eukaryotes by the loss of genes and complexity.

Chapter 21

1 Figure 21.4 D 3 Figure 21.10 C 4 B 6 D 8 B 10 D 12 D 14 D 16 A 17 Viruses pass through filters that eliminated all bacteria that were visible in the light microscopes at the time. As the bacteria-free filtrate could still cause infections when given to a healthy organism, this observation demonstrated the existence of very small infectious agents. These agents were later shown to be unrelated to bacteria and were classified as viruses. 19 Reverse transcriptase is needed to make more HIV-1 viruses, so targeting the reverse transcriptase enzyme may be a way to inhibit the replication of the virus. Importantly, by targeting reverse transcriptase, we do little harm to the host cell, since host cells do not make reverse transcriptase. Thus, we can specifically attack the virus and not the host cell when we use reverse transcriptase inhibitors. 21 Plant viruses infect crops, causing crop damage and failure, and considerable economic losses. 23 This prion-based disease is transmitted through human consumption of infected meat.

Chapter 22

1 Figure 22.8 The extracellular matrix and outer layer of cells protects the inner bacteria. The close proximity of cells also facilitates lateral gene transfer, a process by which genes such as antibiotic resistance genes are transferred from one bacterium to another. And even if lateral gene transfer does not occur, one bacterium that produces an exo-enzyme that destroys antibiotic may save neighboring bacteria. 3 Figure 22.19 D 4 A 6 A B B 10 B 12 A 14 B 16 C 18 B 20 D 22 D 24 B 25 A As the organisms are non-culturable, the presence could be detected through molecular techniques, such as PCR. 27 Responses will vary. A possible answer is: Bacteria contain peptidoglycan in the cell wall; archaea do not. The cell membrane in bacteria is a lipid bilayer; in archaea, it can be a lipid bilayer or a monolayer. Bacteria contain fatty acids on the cell membrane, whereas archaea contain phytanyl. 29 Responses will vary. In a deep-sea hydrothermal vent, there is no light, so prokaryotes would be chemotrophs instead of phototrophs. The source of carbon would be carbon dioxide dissolved in the ocean, so they would be autotrophs. There is not a lot of organic material in the ocean, so prokaryotes would probably use inorganic sources, thus they would be chemolithotrophs. The temperatures are very high in the hydrothermal vent, so the prokaryotes would be thermophilic. 31 E. coli colonizes the surface of the leaf, forming a biofilm that is more difficult to remove than free (planktonic) cells. Additionally, bacteria can be taken up in the water that plants are grown in, thereby entering the plant tissues rather than simply residing on the leaf surface.
Chapter 23

1 **Figure 23.5** All eukaryotic cells have mitochondria, but not all eukaryotic cells have chloroplasts. 3 **Figure 23.18** C 4 D 6 C 8 D 10 B 12 C 14 A 16 A 18 Eukaryotic cells arose through endosymbiotic events that gave rise to the energy-producing organelles within the eukaryotic cells such as mitochondria and chloroplasts. The nuclear genome of eukaryotes is related most closely to the Archaea, so it may have been an early archaean that engulfed a bacterial cell that evolved into a mitochondrion. Mitochondria appear to have originated from an alpha-proteobacterium, whereas chloroplasts originated as a cyanobacterium. There is also evidence of secondary endosymbiotic events. Other cell components may also have resulted from endosymbiotic events. 20 As an intestinal parasite, *Giardia* cysts would be exposed to low pH in the stomach acids of its host. To survive this environment and reach the intestine, the cysts would have to be resistant to acidic conditions. 22 By definition, an obligate saprobe lacks the ability to perform photosynthesis, so it cannot directly obtain nutrition by searching for light. Instead, a chemotactic mechanism that senses the odors released during decay might be a more effective sensing organ for a saprobe. 24 The trypanosomes that cause this disease are capable of expressing a glycoprotein coat with a different molecular structure with each generation. Because the immune system must respond to specific antigens to raise a meaningful defense, the changing nature of trypanosome antigens prevents the immune system from ever clearing this infection. Massive trypanosome infection eventually leads to host organ failure and death.

Chapter 24

1 **Figure 24.13** A 3 **Figure 24.20** Without mycorrhiza, plants cannot absorb adequate nutrients, which stunts their growth. Addition of fungal spores to sterile soil can alleviate this problem. 4 C 6 D 8 A 10 D 12 C 14 A 16 B 18 Asexual reproduction is fast and best under favorable conditions. Sexual reproduction allows the recombination of genetic traits and increases the odds of developing new adaptations better suited to a changed environment. 20 By ingesting spores and disseminating them in the environment as waste, animals act as agents of dispersal. The benefit to the fungus outweighs the cost of producing fleshy fruiting bodies. 22 Protection from excess light that may bleach photosynthetic pigments allows the photosynthetic partner to survive in environments unfavorable to plants. 24 The dough is often contaminated by toxic spores that float in the air. It was one of Louis Pasteur’s achievements to purify reliable strains of baker’s yeast to produce bread consistently.

Chapter 25

1 **Figure 25.5** B. 3 **Figure 25.21** D. 4 A 6 C 8 A 10 C 12 C 14 D 16 D 18 D 19 Sunlight is not filtered by water or other algae on land; therefore, there is no need to collect light at additional wavelengths made available by other pigment coloration. 21 It allows for survival through periodic droughts and colonization of environments where the supply of water fluctuates. 23 The bryophytes are divided into three phyla: the liverworts or Hepaticophyta, the hornworts or Anthocerotophyta, and the mosses or true Bryophyta. 25 Ferns are considered the most advanced seedless vascular plants, because they display characteristics commonly observed in seed plants—they form large leaves and branching roots.

Chapter 26

1 **Figure 26.8** B. The diploid zygote forms after the pollen tube has finished forming, so that the male generative nuclei can fuse with the female gametophyte. 3 D 5 C 7 A 9 B 11 C 13 B 15 C 17 D 19 Both pollination and herbivory contributed to diversity, with plants needing to attract some insects and repel others. 21 The trees are adapted to arid weather, and do not lose as much water due to transpiration as non-conifers. 23 The resemblance between cycads and palm trees is only superficial. Cycads are gymnosperms and do not bear flowers or fruit. Cycads produce cones: large, female cones that produce naked seeds, and smaller male cones on separate plants. Palms do not. 25 Using animal pollinators promotes cross-pollination and increases genetic diversity. The odds that the pollen will reach another flower are greatly increased compared with the randomness of wind pollination.

Chapter 27

1 **Figure 27.5** The animal might develop two heads and no tail. 3 **Figure 27.9** D 4 B 6 D 8 B 10 C 12 D 14 B 16 C 18 D 19 The development of specialized tissues affords more complex animal anatomy and physiology because differentiated tissue types can perform unique functions and work together in tandem to allow the animal to perform more functions. For example, specialized muscle tissue allows directed and efficient movement, and specialized nervous tissue allows for multiple sensory modalities as well as the ability to respond to various sensory information; these functions are not necessarily available to other non-animal organisms. 21 Altered expression of homeotic genes can lead to major changes in the morphology of the individual. *Hox* genes can affect the spatial arrangements of organs and body parts. If a *Hox* gene was mutated or duplicated, it could affect where a leg might be on a fruit fly or how far apart a person’s fingers are. 23 The evolution of bilateral symmetry led to designated head and tail body regions, and promoted more efficient mobility for animals. This improved mobility allowed for more skillful seeking of resources and prey escaping from predators. The appearance of the coelom in coelomates provides many internal organs with shock absorption, making them less prone to physical damage from bodily assault. A coelom also gives the body greater flexibility, which promotes more efficient movement. The relatively loose placement of organs within the coelom allows...
them to develop and grow with some spatial freedom, which promoted the evolution of optimal organ arrangement. The coelom also provides space for a circulatory system, which is an advantageous way to distribute body fluids and gases. 25 In many cases, morphological similarities between animals may be only superficial similarities and may not indicate a true evolutionary relationship. One of the reasons for this is that certain morphological traits can evolve along very different evolutionary branches of animals for similar ecological reasons. 27 It is true that multiple mass extinction events have taken place since the Cambrian period, when most currently existing animal phyla appeared, and the majority of animal species were commonly wiped out during these events. However, a small number of animal species representing each phylum were usually able to survive each extinction event, allowing the phylum to continue to evolve rather than become altogether extinct.

Chapter 28

1 Figure 28.3 B 3 Figure 28.36 C 4 B 6 D 8 B 10 C 12 D 14 A 16 D 18 Pinacocytes are epithelial-like cells, form the outermost layer of sponges, and enclose a jelly-like substance called mesohyl. In some sponges, porocytes form ostia, single tube-shaped cells that act as valves to regulate the flow of water into the spongocoel. Choanocytes (“collar cells”) are present at various locations, depending on the type of sponge, but they always line some space through which water flows and are used in feeding. 20 Nematocysts are “stinging cells” designed to paralyze prey. The nematocysts contain a neurotoxin that renders prey immobile. 22 Mollusks have a large muscular foot that may be modified in various ways, such as into tentacles, but it functions in locomotion. They have a mantle, a structure of tissue that covers and encloses the dorsal portion of the animal, and secretes the shell when it is present. The mantle encloses the mantle cavity, which houses the gills (when present), excretory pores, anus, and gonadopores. The coelom of mollusks is restricted to the region around the systemic heart. The main body cavity is a hemocoel. Many mollusks have a radula near the mouth that is used for scraping food. 24 It is a true animal with at least rudiments of the physiological systems—feeding, nervous, muscle, and reproductive—found in “higher animals” like mice and humans. It is so small that large numbers can be raised in Petri dishes. It reproduces rapidly. It is transparent so that every cell in the living animal can be seen under the microscope. Before it dies (after 2–3 weeks), it shows signs of aging and thus may provide general clues as to the aging process. 26 The Arthropoda include the Hexapoda, which are mandibulates with six legs, the Myriapoda, which are mandibulates with many legs and include the centipedes and millipedes, the Crustacea, which are mostly marine mandibulates, and the Chelicera, which include the spiders and scorpions and their kin. 28 The Asteroidea are the sea stars, the Echinoidea are the sea urchins and sand dollars, the Ophiuroidea are the brittle stars, the Crinoidea are the sea lilies and feather stars, the Holothuroidea are the sea cucumbers.

Chapter 29

1 Figure 29.3 A 3 Figure 29.22 The ancestor of modern Testudines may at one time have had a second opening in the skull, but over time this might have been lost. 4 B 6 C 8 D 10 C 12 B 14 A 16 A 18 The characteristic features of the phylum Chordata are a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal tail. 20 Evolution of the jaw and paired fins permitted gnathostomes to diversify from the sedimentary suspension feeding of agnathans to a mobile predatory lifestyle. The ability of gnathostomes to utilize new nutrient sources may be one reason why the gnathostomes replaced most agnathans. 22 The larval stage of frogs is the tadpole, which is usually a filter-feeding herbivore. Tadpoles usually have gills, a lateral line system, long-finned tails, and lack limbs. In the adult form, the gills and lateral line system disappear, and four limbs develop. The jaws grow larger, suitable for carnivorous feeding, and the digestive system transforms into the typical short gut of a predator. An eardrum and air-breathing lungs also develop. 24 Lizards differ from snakes by having eyelids, external ears, and less kinematic skulls. 26 The sternum of birds is larger than that of other vertebrates, which accommodates the force required for flapping. Another skeletal modification is the fusion of the clavicles, forming the furcula or wishbone. The furcula is flexible enough to bend during flapping and provides support to the shoulder girdle during flapping. Birds also have pneumatic bones that are hollow rather than filled with tissue. 28 In some mammals, the cerebral cortex is highly folded, allowing for greater surface area than a smooth cortex. The optic lobes are divided into two parts in mammals. Eutherian mammals also possess a specialized structure that links the two cerebral hemispheres, called the corpus callosum. 30 The immediate ancestors of humans were Australopithecus. All people past and present, along with the australopithecines, are hominins. We share the adaptation of being habitually bipedal. The earliest australopithecines very likely did not evolve until 5 million years ago. The primate fossil record for this crucial transitional period leading to australopithecines is still sketchy and somewhat confusing. By about 2.5 million years ago, there were at least two evolutionary lines of hominins descended from early australopithecines.

Chapter 30

1 Figure 30.7 A and B. The cortex, pith, and epidermis are made of parenchyma cells. 3 Figure 30.34 B. 4 C 6 C 8 A 10 B 12 A 14 B 16 C 18 B 20 D 22 C 24 C 26 C 27 Lawn grasses and other monocots have an intercalary meristem, which is a region of meristematic tissue at the base of the leaf blade. This is beneficial to the plant because it can continue to grow even when the tip of the plant is removed by grazing or mowing. 29 Stomata allow gases to enter and exit the plant. Guard cells regulate the opening and closing of stomata. If these cells did not function correctly, a plant could not get the carbon dioxide needed for photosynthesis, nor could it release the oxygen produced by photosynthesis. 31 In woody plants, the cork cambium is the outermost lateral meristem; it produces new cells towards the interior, which enables the plant to increase in girth. The cork cambium also produces cork cells towards the exterior, which protect the plant from physical damage while reducing water loss. 33 Annual rings can also indicate the climate conditions that prevailed during each growing season. 35 A tap root system
has a single main root that grows down. A fibrous root system forms a dense network of roots that is closer to the soil surface. An example of a tap root system is a carrot. Grasses such as wheat, rice, and corn are examples of fibrous root systems. Fibrous root systems are found in monocots; tap root systems are found in dicots. Monocots have leaves with parallel venation, and dicots have leaves with reticulate, net-like venation. The process of bulk flow moves water up the xylem and moves photosynthates (solute) up and down the phloem. Gravitropism will allow roots to dig deep into the soil to find water and minerals, whereas the seedling will grow towards light to allow photosynthesis. To prevent further entry of pathogens, stomata close, even if they restrict entry of CO₂. Some pathogens secrete virulence factors that inhibit the closing of stomata. Abspicid acid is the stress hormone responsible for inducing closing of stomata.

Chapter 31

1 Figure 31.5 The air content of the soil decreases. Figure 31.9 Soybeans are able to fix nitrogen in their roots, which are not harvested at the end of the growing season. The belowground nitrogen can be used in the next season by the corn. 4 C 6 A 8 D 10 B 12 B 14 A 16 Deficiencies in these nutrients could result in stunted growth, slow growth, and chlorosis. 18 Answers may vary. Essential macronutrients include carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur. Essential micronutrients include iron, manganese, boron, molybdenum, copper, zinc, chlorine, nickel, cobalt, sodium, and silicon. Parent material, climate, topography, biological factors, and time affect soil formation. Parent material is the material in which soils form. Climate describes how temperature, moisture, and wind cause different patterns of weathering, influencing the characteristics of the soil. Topography affects the characteristics and fertility of a soil. Biological factors include the presence of living organisms that greatly affect soil formation. Processes such as freezing and thawing may produce cracks in rocks; plant roots can penetrate these crevices and produce more fragmentation. Time affects soil because soil develops over long periods. Because it is natural and does not require use of a nonrenewable resource, such as natural gas. A nodule results from the symbiosis between a plant and bacterium. Within nodules, the process of nitrogen fixation allows the plant to obtain nitrogen from the air.

Chapter 32

1 Figure 32.3 Pollen (or sperm); carpellate; staminate. Figure 32.20 B 4 B 6 A 8 B 10 D 12 A 14 D 16 Inside the flower are the reproductive organs of the plant. The stamen is the male reproductive organ. Pollen is produced in the stamen. The carpel is the female reproductive organ. The ovary is the swollen base of the carpel where ovules are found. Not all flowers have every one of the four parts. A typical flower has four main parts, or whorls: the calyx, corolla, androecium, and gynoecium. The outermost whorl of the flower has green, leafy structures known as sepals, which are collectively called the calyx. It helps to protect the unopened bud. The second whorl is made up of brightly colored petals that are known collectively as the corolla. The third whorl is the male reproductive structure known as the androecium. The androecium has stamens, which have anthers on a stalk or filament. Pollen grains are borne on the anthers. The gynoecium is the female reproductive structure. The carpel is the individual structure of the gynoecium and has a stigma, the stalk or style, and the ovary. Many seeds enter a period of inactivity or extremely low metabolic activity, a process known as dormancy. Dormancy allows seeds to tide over unfavorable conditions and germinate on return to favorable conditions. Favorable conditions could be as diverse as moisture, light, cold, fire, or chemical treatments. After heavy rains, many new seedlings emerge. Forest fires also lead to the emergence of new seedlings. Asexual reproduction does not require the expenditure of the plant’s resources and energy that would be involved in producing a flower, attracting pollinators, or dispersing seeds. Asexual reproduction results in plants that are genetically identical to the parent plant, since there is no mixing of male and female gametes, resulting in better survival. The cuttings or buds taken from an adult plant produce progeny that mature faster and are sturdier than a seedling grown from a seed. Plant species that complete their life cycle in one season are known as annuals. Biennials complete their life cycle in two seasons. In the first season, the plant has a vegetative phase, whereas in the next season, it completes its reproductive phase. Perennials, such as the magnolia, complete their life cycle in two years or more.

Chapter 33

1 Figure 33.11 A 3 Figure 33.22 Pyrogens increase body temperature by causing the blood vessels to constrict, inducing shivering, and stopping sweat glands from secreting fluid. A 4 A 6 C B D 10 C 12 D 14 D 16 A 18 B 20 C 22 D 24 Diffusion is effective over a very short distance. If a cell exceeds this distance in its size, the center of the cell cannot get adequate nutrients nor can it expel enough waste to survive. To compensate for this, cells can loosely adhere to each other in a liquid medium, or develop into multi-celled organisms that use circulatory and respiratory systems to deliver nutrients and remove wastes. Squamous epithelia can be either simple or stratified. As a single layer of cells, it presents a very thin epithelia that minimally inhibits diffusion. As a stratified epithelia, the surface cells can be sloughed off and the cells in deeper layers protect the underlying tissues from damage. An adjustment to a change in the internal or external environment requires a change in the direction of the stimulus. A negative feedback loop accomplishes this, while a positive feedback loop would continue the stimulus and result in harm to the animal. Diabetes is often associated with a lack in production of insulin. Without insulin, blood glucose levels go up after a meal, but never go back down to normal levels.
Chapter 34

1 Figure 34.11 B 3 Figure 34.19 C 4 D 6 C 8 A 10 A 12 A 14 C 16 Animals with a polygastric digestive system have a multi-chambered stomach. The four compartments of the stomach are called the rumen, reticulum, omasum, and abomasum. These chambers contain many microbes that break down the cellulose and ferment the ingested food. The abomasum is the “true” stomach and is the equivalent of a monogastric stomach chamber where gastric juices are secreted. The four-compartment gastric chamber provides larger space and the microbial support necessary for ruminants to digest plant material. 18 Accessory organs play an important role in producing and delivering digestive juices to the intestine during digestion and absorption. Specifically, the salivary glands, liver, pancreas, and gallbladder play important roles. Malfunction of any of these organs can lead to disease states. 20 Essential nutrients are those nutrients that must be obtained from the diet because they cannot be produced by the body. Vitamins and minerals are examples of essential nutrients. 22 In the United States, obesity, particularly childhood obesity, is a growing concern. Some of the contributors to this situation include sedentary lifestyles and consuming more processed foods and less fruits and vegetables. As a result, even young children who are obese can face health concerns. 24 Lipids add flavor to food and promote a sense of satiety or fullness. Fatty foods are sources of high energy; one gram of lipid contains nine calories. Lipids are also required in the diet to aid the absorption of lipid-soluble vitamins and for the production of lipid-soluble hormones. 26 There are many cases where loss of hormonal regulation can lead to illnesses. For example, the bilirubin produced by the breakdown of red blood cells is converted to bile by the liver. When there is malfunction of this process, there is excess bilirubin in the blood and bile levels are low. As a result, the body struggles with dealing with fatty food. This is why a patient suffering from jaundice is asked to eat a diet with almost zero fat.

Chapter 35

1 Figure 35.3 B 3 Figure 35.26 D 4 C 6 B 8 B 10 D 12 B 14 B 16 B 18 B 19 Neurons contain organelles common to all cells, such as a nucleus and mitochondria. They are unique because they contain dendrites, which can receive signals from other neurons, and axons that can send these signals to other cells. 21 Myelin prevents the leak of current from the axon. Nodes of Ranvier allow the action potential to be regenerated at specific points along the axon. They also save energy for the cell since voltage-gated ion channels and sodium-potassium transporters are not needed along myelinated portions of the axon. 23 To determine the function of a specific brain area, scientists can look at patients who have damage in that brain area and see what symptoms they exhibit. Researchers can disable the brain structure temporarily using transcranial magnetic stimulation. They can disable or remove the area in an animal model. fMRI can be used to correlate specific functions with increased blood flow to brain regions. 25 The sympathetic nervous system prepares the body for “fight or flight,” whereas the parasympathetic nervous system allows the body to “rest and digest.” Sympathetic neurons release norepinephrine onto target organs; parasympathetic neurons release acetylcholine. Sympathetic neuron cell bodies are located in sympathetic ganglia. Parasympathetic neuron cell bodies are located in the brainstem and sacral spinal cord. Activation of the sympathetic nervous system increases heart rate and blood pressure and decreases digestion and blood flow to the skin. Activation of the parasympathetic nervous system decreases heart rate and blood pressure and increases digestion and blood flow to the skin. 27 Symptoms of Alzheimer’s disease include disruptive memory loss, confusion about time or place, difficulties planning or executing tasks, poor judgment, and personality changes.

Chapter 36

1 Figure 36.5 D 3 Figure 36.17 A 4 B 6 A 8 A 10 A 12 B 14 A 16 B 18 D 19 Transmission of sensory information from the receptor to the central nervous system will be impaired, and thus, perception of stimuli, which occurs in the brain, will be halted. 21 The cortical areas serving skin that is densely innervated likely are larger than those serving skin that is less densely innervated. 23 The animal might not be able to recognize the differences in food sources and thus might not be able to discriminate between spoiled food and safe food or between foods that contain necessary nutrients, such as proteins, and foods that do not. 25 Because vestibular sensation relies on gravity’s effects on tiny crystals in the inner ear, a situation of reduced gravity would likely impair vestibular sensation. 27 The photoreceptors tonically inhibit the bipolar cells, and stimulation of the receptors turns this inhibition off, activating the bipolar cells.

Chapter 37

1 Figure 37.5 Proteins unfold, or denature, at higher temperatures. 3 Figure 37.14 Patient A has symptoms associated with decreased metabolism, and may be suffering from hypothyroidism. Patient B has symptoms associated with increased metabolism, and may be suffering from hyperthyroidism. 4 C 6 D 8 A 10 C 12 A 14 C 16 Although there are many different hormones in the human body, they can be divided into three classes based on their chemical structure: lipid-derived, amino acid-derived, and peptide hormones. One of the key distinguishing features of the lipid-derived hormones is that they can diffuse across plasma membranes whereas the amino acid-derived and peptide hormones cannot. 18 The number of receptors that respond to a hormone can change, resulting in increased or decreased cell sensitivity. The number of receptors can increase in response to rising hormone levels, called up-regulation, making the cell more sensitive to the hormone and allowing for more cellular activity. The number of receptors can also decrease in response to rising hormone levels, called down-regulation, leading to reduced cellular activity. 20 In addition to producing FSH and LH, the anterior pituitary also produces the hormone prolactin.
so electrical signals in the T-tubules are no longer possible. The result is paralysis, leading to death by asphyxiation.

1 Hormone production and release are primarily controlled by negative feedback. In negative feedback systems, a stimulus causes the release of a substance whose effects then inhibit further release. In this way, the concentration of hormones in blood is maintained within a narrow range. For example, the anterior pituitary signals the thyroid to release thyroid hormones. Increasing levels of these hormones in the blood then feed back to the hypothalamus and anterior pituitary to inhibit further signaling to the thyroid gland. 22 The main mineralocorticoid is aldosterone, which regulates the concentration of ions in urine, sweat, and saliva. Aldosterone release from the adrenal cortex is stimulated by a decrease in blood concentrations of sodium ions, blood volume, or blood pressure, or an increase in blood potassium levels.

Chapter 38

1 Figure 38.19B 3 Figure 38.38 In the presence of Sarin, acetylcholine is not removed from the synapse, resulting in continuous stimulation of the muscle plasma membrane. At first, muscle activity is intense and uncontrolled, but the ion gradients dissipate, so electrical signals in the T-tubules are no longer possible. The result is paralysis, leading to death by asphyxiation. 4 A 6 D 8 B 10 A 12 B 14 C 16 D 18 D 20 The female pelvis is tilted forward and is wider, lighter, and shallower than the male pelvis. It is also has a pubic angle that is broader than the male pelvis. 22 Compact bone tissue forms the hard external layer of all bones and consists of osteons. Compact bone tissue is prominent in areas of bone at which stresses are applied in only a few directions. Spongy bone tissue forms the inner layer of all bones and consists of trabeculae. Spongy bone is prominent in areas of bones that are not heavily stressed or at which stresses arrive from many directions. 24 The hip joint is flexed and the knees are extended. 26 Because ATP is required for myosin to release from actin, muscles would remain rigidly contracted until more ATP was available for the myosin cross-bridge release. This is why dead vertebrates undergo rigor mortis. 28 Neurons will not be able to release neurotransmitter without calcium. Skeletal muscles have calcium stored and don’t need any from the outside.

Chapter 39

1 Figure 39.7 B 3 Figure 39.20 The blood pH will drop and hemoglobin affinity for oxygen will decrease. 4 A 6 B 8 D 10 B 12 D 14 C 16 The main bronchus is the conduit in the lung that funnels air to the airways where gas exchange occurs. The main bronchus attaches the lungs to the very end of the trachea where it bifurcates. The trachea is the cartilaginous structure that extends from the pharynx to the primary bronchi. It serves to funnel air to the lungs. The alveoli are the sites of gas exchange; they are located at the terminal regions of the lung and are attached to the respiratory bronchioles. The acinus is the structure in the lung where gas exchange occurs. 18 FEV1/FVC measures the forced expiratory volume in one second in relation to the total forced vital capacity (the total amount of air that is exhaled from the lung from a maximal inhalation). This ratio changes with alterations in lung function that arise from diseases such as fibrosis, asthma, and COPD. 20 Oxygen moves from the lung to the bloodstream to the tissues according to the pressure gradient. This is measured as the partial pressure of oxygen. If the amount of oxygen drops in the inspired air, there would be reduced partial pressure. This would decrease the driving force that moves the oxygen into the blood and into the tissues. \(P_{O_2} \) is also reduced at high elevations: \(P_{O_2} \) at high elevations is lower than at sea level because the total atmospheric pressure is less than atmospheric pressure at sea level. 22 Increased airway resistance increases the volume and pressure in the lung; therefore, the intrapleural pressure would be less negative and breathing would be more difficult. 24 The lung is particularly susceptible to changes in the magnitude and direction of gravitational forces. When someone is standing or sitting upright, the pleural pressure gradient leads to increased ventilation further down in the lung. 26 Carbon monoxide has a higher affinity for hemoglobin than oxygen. This means that carbon monoxide will preferentially bind to hemoglobin over oxygen. Administration of 100 percent oxygen is an effective therapy because at that concentration, oxygen will displace the carbon monoxide from the hemoglobin.

Chapter 40

1 Figure 40.10 C 3 Figure 40.17 Blood in the legs is farthest away from the heart and has to flow up to reach it. 4 A 6 C 8 C 10 C 12 A 14 A 16 A closed circulatory system is a closed-loop system, in which blood is not free in a cavity. Blood is separate from the bodily interstitial fluid and contained within blood vessels. In this type of system, blood circulates unidirectionally from the heart around the systemic circulatory route, and then returns to the heart. 18 Red blood cells are coated with proteins called antigens made of glycolipids and glycoproteins. When type A and type B blood are mixed, the blood agglutinates because of antibodies in the plasma that bind with the opposing antigen. Type O blood has no antigens. The Rh blood group has either the Rh antigen (Rh+) or no Rh antigen (Rh–). 20 Lymph capillaries take fluid from the blood to the lymph nodes. The lymph nodes filter the lymph by percolation through connective tissue filled with white blood cells. The white blood cells remove infectious agents, such as bacteria and viruses, to clean the lymph before it returns to the bloodstream. 22 The capillaries basically exchange materials with their surroundings. Their walls are very thin and are made of one or two layers of cells, where gases, nutrients, and waste are diffused. They are distributed as beds, complex networks that link arteries as well as veins.
Chapter 41

1 Figure 41.5 C 3 Figure 41.8 Loop diuretics decrease the excretion of salt into the renal medulla, thereby reducing its osmolality. As a result, less water is excreted into the medulla by the descending limb, and more water is excreted as urine. 4 B 6 A 8 B 10 C 12 D 14 C 16 C 18 Excretion allows an organism to rid itself of waste molecules that could be toxic if allowed to accumulate. It also allows the organism to keep the amount of water and dissolved solutes in balance. 20 The loop of Henle is part of the renal tubule that loops into the renal medulla. In the loop of Henle, the filtrate exchanges solutes and water with the renal medulla and the vasa recta (the peritubular capillary network). The vasa recta acts as the countercurrent exchanger. The kidneys maintain the osmolality of the rest of the body at a constant 300 mOsm by concentrating the filtrate as it passes through the loop of Henle. 22 The removal of wastes, which could otherwise be toxic to an organism, is extremely important for survival. Having organs that specialize in this process and that operate separately from other organs provides a measure of safety for the organism. 24 It is believed that the urea cycle evolved to adapt to a changing environment when terrestrial life forms evolved. Arid conditions probably led to the evolution of the urea acid pathway as a means of conserving water. 26 Hormones are small molecules that act as messengers within the body. Different regions of the nephron bear specialized cells, which have receptors to respond to chemical messengers and hormones. The hormones carry messages to the kidney. These hormonal cues help the kidneys synchronize the osmotic needs of the body. Hormones like epinephrine, norepinephrine, renin-angiotensin, aldosterone, anti-diuretic hormone, and atrial natriuretic peptide help regulate the needs of the body as well as the communication between the different organ systems.

Chapter 42

1 Figure 42.11 C 3 Figure 42.16 If the blood of the mother and fetus mixes, memory cells that recognize the Rh antigen can form late in the first pregnancy. During subsequent pregnancies, these memory cells launch an immune attack on the fetal blood cells. Injection of anti-Rh antibody during the first pregnancy prevents the immune response from occurring. 4 D 6 A 8 D 10 B 12 D 14 C 16 C 18 B 20 C 22 If the MHC I molecules expressed on donor cells differ from the MHC I molecules expressed on recipient cells, NK cells may identify the donor cells as “non-self” and produce perforin and granzymes to induce the donor cells to undergo apoptosis, which would destroy the transplanted organ. 24 An antigen is a molecule that reacts with some component of the immune response (antibody, B cell receptor, T cell receptor). An epitope is the region on the antigen through which binding with the immune component actually occurs. 26 The Th1 response involves the secretion of cytokines to stimulate macrophages and CTLs and improve their destruction of intracellular pathogens and tumor cells. It is associated with inflammation. The Th2 response is involved in the stimulation of B cells into plasma cells that synthesize and secrete antibodies. 28 T cells bind antigens that have been digested and embedded in MHC molecules by APCs. In contrast, B cells function themselves as APCs to bind intact, unprocessed antigens. 30 Cross reactivity of antibodies can be beneficial when it allows an individual’s immune system to respond to an array of similar pathogens after being exposed to just one of them. A potential cost of cross reactivity is an antibody response to parts of the body (self) in addition to the appropriate antigen.

Chapter 43

1 Figure 43.8 D 3 Figure 43.17 B 4 A 6 D 8 A 10 A 12 C 14 A 16 A 18 C 20 D 22 A 24 B 26 B 28 D 30 D 31 Sexual reproduction produces a new combination of genes in the offspring that may better enable them to survive changes in the environment and assist in the survival of the species. 33 External fertilization can create large numbers of offspring without requiring specialized delivery or reproductive support organs. Offspring develop and mature quickly compared to internally fertilizing species. A disadvantage is that the offspring are out in the environment and predation can account for large loss of offspring. The embryos are susceptible to changes in the environment, which further depletes their numbers. Internally fertilizing species control their environment and protect their offspring from predators but must have specialized organs to complete these tasks and usually produce fewer embryos. 35 In phase one (excitement), vasodilation leads to vasocongestion and enlargement of erectile tissues. Vaginal secretions are released to lubricate the vagina during intercourse. In phase two (plateau), stimulation continues, the outer third of the vaginal wall enlarges with blood, and breathing and heart rate increase. In phase three (orgasm), rhythmic, involuntary contractions of muscles occur. In the male, reproductive accessory glands and tubules constrict, depositing semen in the urethra; then, the urethra contracts, expelling the semen through the penis. In women, the uterus and vaginal muscles contract in waves that may last slightly less than a second each. In phase four (resolution), the processes listed in the first three phases reverse themselves and return to their normal state. Men experience a refractory period in which they cannot maintain an erection or ejaculate for a period of time ranging from minutes to hours. Women do not experience a refractory period. 37 Negative feedback in the male system is supplied through two hormones: inhibin and testosterone. Inhibin is produced by Sertoli cells when the sperm count exceeds set limits. The hormone inhibits GnRH and FSH, decreasing the activity of the Sertoli cells. Increased levels of testosterone affect the release of both GnRH and LH, decreasing the activity of the Leydig cells, resulting in decreased testosterone and sperm production. 39 The first trimester lays down the basic structures of the body, including the limb buds, heart, eyes, and the liver. The second trimester continues the development of all of the organs and systems established during the first trimester. The placenta takes over the production of estrogen and high levels of progesterone and handles the nutrient and waste requirements of the fetus. The third trimester exhibits the greatest growth of the fetus, culminating in labor and delivery. 41 Multiple sperm can fuse with the egg, resulting in polyspermy. The resulting embryo is not genetically viable and dies within a few days. 43 Organs form from the germ layers through the process of differentiation. During differentiation, the embryonic stem cells
express a specific set of genes that will determine their ultimate fate as a cell type. For example, some cells in the ectoderm will express the genes specific to skin cells. As a result, these cells will differentiate into epidermal cells. The process of differentiation is regulated by cellular signaling cascades.

Chapter 44

1 Figure 44.10 Tropical lakes don’t freeze, so they don’t undergo spring turnover in the same way temperate lakes do. However, stratification does occur, as well as seasonal turnover. 3 Figure 44.21 C. Photosynthetic organisms would be found in the photic, abyssal, neritic, and oceanic zones. 4 B 6 D 8 D 10 D 12 C 14 Ecologists working in organismal or population ecology might ask similar questions about how the biotic and abiotic conditions affect particular organisms and, thus, might find collaboration to be mutually beneficial. Levels of ecology such as community ecology or ecosystem ecology might pose greater challenges for collaboration because these areas are very broad and may include many different environmental components. 16 Ocean upwelling is a continual process that occurs year-round. Spring and fall turnover in freshwater lakes and ponds, however, is a seasonal process that occurs due to temperature changes in the water that take place during springtime warming and autumn cooling. Both ocean upwelling and spring and fall turnover enable nutrients in the organic materials at the bottom of the body of water to be recycled and reused by living things. 18 Fire is less common in desert biomes than in temperate grasslands because deserts have low net primary productivity and, thus, very little plant biomass to fuel a fire. 20 Bogs are low in oxygen and high in organic acids. The low oxygen content and the low pH both slow the rate of decomposition. 22 Natural processes such as the Milankovitch cycles, variation in solar intensity, and volcanic eruptions can cause periodic, intermittent changes in global climate. Human activity, in the form of emissions from the burning of fossil fuels, has caused a progressive rise in the levels of atmospheric carbon dioxide.

Chapter 45

1 Figure 45.2 Smaller animals require less food and other resources, so the environment can support more of them. 3 Figure 45.16 Stage 4 represents a population that is decreasing. 4 C 6 A 8 B 10 A 12 B 14 B 16 D 18 B 20 B 22 D 24 B 25 The researcher would mark a certain number of penguins with a tag, release them back into the population, and, at a later time, recapture penguins to see what percentage of the recaptured penguins was tagged. This percentage would allow an estimation of the size of the penguin population. 27 In the first part of the curve, when few individuals of the species are present and resources are plentiful, growth is exponential, similar to a J-shaped curve. Later, growth slows due to the species using up resources. Finally, the population levels off at the carrying capacity of the environment, and it is relatively stable over time. 29 Rapidly growing countries have a large segment of the population at a reproductive age or younger. Slower growing populations have a lower percentage of these individuals, and countries with zero population growth have an even lower percentage. On the other hand, a high proportion of older individuals is seen mostly in countries with zero growth, and a low proportion is most common in rapidly growing countries. 31 Dogs salivated in response to food. This was the unconditioned stimulus and response. Dogs exposed to food had a bell rung repeatedly at the same time, eventually learning to associate the bell with food. Over time, the dogs would salivate when the bell was rung, even in the absence of food. Thus, the bell became the conditioned stimulus, and the salivation in response to the bell became the conditioned response.

Chapter 46

1 Figure 46.8 According to the first law of thermodynamics, energy can neither be created nor destroyed. Eventually, all energy consumed by living systems is lost as heat or used for respiration, and the total energy output of the system must equal the energy that went into it. 3 Figure 46.17 C. Nitrification by bacteria converts nitrates (NO₃⁻) to nitrites (NO₂⁻). 4 D 6 B 8 A 10 D 12 D 14 B 16 A 18 A 20 C 21 Food webs show interacting groups of different species and their many interconnections with each other and the environment. Food chains are linear aspects of food webs that describe the succession of organisms consuming one another at defined trophic levels. Food webs are a more accurate representation of the structure and dynamics of an ecosystem. Food chains are easier to model and use for experimental studies. 23 Grazing food webs have a primary producer at their base, which is either a plant for terrestrial ecosystems or a phytoplankton for aquatic ecosystems. The producers pass their energy to the various trophic levels of consumers. At the base of detrital food webs are the decomposers, which pass this energy to a variety of other consumers. Detrital food webs are important for the health of many grazing food webs because they eliminate dead and decaying organic material, thus, clearing space for new organisms and removing potential causes of disease. By breaking down dead organic matter, decomposers also make mineral nutrients available to primary producers; this process is a vital link in nutrient cycling. 25 NPE measures the rate at which one trophic level can use and make biomass from what it attained in the previous level, taking into account respiration, defecation, and heat loss. Endotherms have high metabolism and generate a lot of body heat. Although this gives them advantages in their activity level in colder temperatures, these organisms are 10 times less efficient at harnessing the energy from the food they eat compared with cold-blooded animals, and thus have to eat more and more often. 27 Many factors can kill life in a lake or ocean, such as eutrophication by nutrient-rich surface runoff, oil spills, toxic waste spills, changes in climate, and the dumping of garbage into the ocean. Eutrophication is a result of nutrient-rich runoff from land using artificial fertilizers high in nitrogen and phosphorus. These nutrients cause the rapid and excessive growth of microorganisms, which deplete local dissolved oxygen and kill many fish and other aquatic organisms.
Chapter 47

1 Figure 47.6 A. An abundance of fern spores from several species was found below the K-Pg boundary, but none was found above. 3 B 5 C 7 C 9 B 11 D 13 C 15 D 17 The hypothesized cause of the K–Pg extinction event is an asteroid impact. The first piece of evidence of the impact is a spike in iridium (an element that is rare on Earth, but common in meteors) in the geological layers that mark the K–Pg transition. The second piece of evidence is an impact crater off the Yucatán Peninsula that is the right size and age to have caused the extinction event. 19 Crop plants are derived from wild plants, and genes from wild relatives are frequently brought into crop varieties by plant breeders to add valued characteristics to the crops. If the wild species are lost, then this genetic variation would no longer be available. 21 Human population growth leads to unsustainable resource use, which causes habitat destruction to build new human settlements, create agricultural fields, and so on. Larger human populations have also led to unsustainable fishing and hunting of wild animal populations. Excessive use of fossil fuels also leads to global warming. 23 Larger preserves will contain more species. Preserves should have a buffer around them to protect species from edge effects. Preserves that are round or square are better than preserves with many thin arms.