Concepts of Biology
Chapter 14 | Diversity of Plants

14 | DIVERSITY OF PLANTS

Figure 14.1 Plants dominate the landscape and play an integral role in human societies. (a) Palm trees grow in tropical or subtropical climates; (b) wheat is a crop in most of the world; the flower of (c) the cotton plant produces fibers that are woven into fabric; the potent alkaloids of (d) the beautiful opium poppy have influenced human life both as a medicinal remedy and as a dangerously addictive drug. (credit a: modification of work by “3BoysInSanDiego”/Wikimedia Commons; credit b: modification of work by Stephen Ausmus, USDA ARS; credit c: modification of work by David Nance, USDA ARS; credit d: modification of work by Jolly Janner)

Chapter Outline

14.1: The Plant Kingdom
14.2: Seedless Plants
14.3: Seed Plants: Gymnosperms
14.4: Seed Plants: Angiosperms

Introduction

Plants play an integral role in all aspects of life on the planet, shaping the physical terrain, influencing the climate, and maintaining life as we know it. For millennia, human societies have depended on plants for nutrition and medicinal compounds, and for many industrial by-products, such as timber, paper, dyes, and textiles. Palms provide materials
including rattans, oils, and dates. Wheat is grown to feed both human and animal populations. The cotton boll flower is harvested and its fibers transformed into clothing or pulp for paper. The showy opium poppy is valued both as an ornamental flower and as a source of potent opiate compounds.

Current evolutionary thought holds that all plants are monophyletic: that is, descendants of a single common ancestor. The evolutionary transition from water to land imposed severe constraints on the ancestors of contemporary plants. Plants had to evolve strategies to avoid drying out, to disperse reproductive cells in air, for structural support, and to filter sunlight. While seed plants developed adaptations that allowed them to populate even the most arid habitats on Earth, full independence from water did not happen in all plants, and most seedless plants still require a moist environment.

14.1 | The Plant Kingdom

By the end of this section, you will be able to:

- Describe the major characteristics of the plant kingdom
- Discuss the challenges to plant life on land
- Describe the adaptations that allowed plants to colonize land

Plants are a large and varied group of organisms. There are close to 300,000 species of catalogued plants. Of these, about 260,000 are plants that produce seeds. Mosses, ferns, conifers, and flowering plants are all members of the plant kingdom. The plant kingdom contains mostly photosynthetic organisms; a few parasitic forms have lost the ability to photosynthesize. The process of photosynthesis uses chlorophyll, which is located in organelles called chloroplasts. Plants possess cell walls containing cellulose. Most plants reproduce sexually, but they also have diverse methods of asexual reproduction. Plants exhibit indeterminate growth, meaning they do not have a final body form, but continue to grow body mass until they die.

Plant Adaptations to Life on Land

As organisms adapt to life on land, they have to contend with several challenges in the terrestrial environment. Water has been described as “the stuff of life.” The cell’s interior—the medium in which most small molecules dissolve and diffuse, and in which the majority of the chemical reactions of metabolism take place—is a watery soup. Desiccation, or drying out, is a constant danger for an organism exposed to air. Even when parts of a plant are close to a source of water, their aerial structures are likely to dry out. Water provides buoyancy to organisms that live in aquatic habitats. On land, plants need to develop structural support in air—a medium that does not give the same lift. Additionally, the male gametes must reach the female gametes using new strategies because swimming is no longer possible. Finally, both gametes and zygotes must be protected from drying out. The successful land plants evolved strategies to deal with all of these challenges, although not all adaptations appeared at once. Some species did not move far from an aquatic environment, whereas others left the water and went on to conquer the driest environments on Earth.

To balance these survival challenges, life on land offers several advantages. First, sunlight is abundant. On land, the spectral quality of light absorbed by the photosynthetic pigment, chlorophyll, is not filtered out by water or competing photosynthetic species in the water column above. Second, carbon dioxide is more readily available because its concentration is higher in air than in water. Additionally, land plants evolved before land animals; therefore, until dry land was colonized by animals, no predators threatened the well-being of plants. This situation changed as animals emerged from the water and found abundant sources of nutrients in the established flora. In turn, plants evolved strategies to deter predation: from spines and thorns to toxic chemicals.

The early land plants, like the early land animals, did not live far from an abundant source of water and developed survival strategies to combat dryness. One of these strategies is drought tolerance. Mosses, for example, can dry out to a brown and brittle mat, but as soon as rain makes water available, mosses will soak it up and regain their healthy, green appearance. Another strategy is to colonize environments with high humidity where droughts are uncommon. Ferns, an early lineage of plants, thrive in damp and cool places, such as the understory of temperate forests. Later, plants moved away from aquatic environments using resistance to desiccation, rather than tolerance. These plants, like the cactus, minimize water loss to such an extent they can survive in the driest environments on Earth.

In addition to adaptations specific to life on land, land plants exhibit adaptations that were responsible for their diversity and predominance in terrestrial ecosystems. Four major adaptations are found in many terrestrial plants: the alternation of...
generations, a sporangium in which spores are formed, a gametangium that produces haploid cells, and in vascular plants, apical meristem tissue in roots and shoots.

Alternation of Generations

Alternation of generations describes a life cycle in which an organism has both haploid and diploid multicellular stages (Figure 14.2).

![Figure 14.2 Alternation of generations between the haploid (1n) gametophyte and diploid (2n) sporophyte is shown. (credit: modification of work by Peter Coxhead)](image)

Haplontic refers to a life cycle in which there is a dominant haploid stage. Diplontic refers to a life cycle in which the diploid stage is the dominant stage, and the haploid chromosome number is only seen for a brief time in the life cycle during sexual reproduction. Humans are diplontic, for example. Most plants exhibit alternation of generations, which is described as haplodiplontic: the haploid multicellular form known as a gametophyte is followed in the development sequence by a multicellular diploid organism, the sporophyte. The gametophyte gives rise to the gametes, or reproductive cells, by mitosis. It can be the most obvious phase of the life cycle of the plant, as in the mosses, or it can occur in a microscopic structure, such as a pollen grain in the higher plants (the collective term for the vascular plants). The sporophyte stage is barely noticeable in lower plants (the collective term for the plant groups of mosses, liverworts, and hornworts). Towering trees are the diplontic phase in the lifecycles of plants such as sequoias and pines.

Sporangia in the Seedless Plants

The sporophyte of seedless plants is diploid and results from syngamy or the fusion of two gametes (Figure 14.2). The sporophyte bears the sporangia (singular, sporangium), organs that first appeared in the land plants. The term “sporangia” literally means “spore in a vessel,” as it is a reproductive sac that contains spores. Inside the multicellular sporangia, the diploid sporocytes, or mother cells, produce haploid spores by meiosis, which reduces the 2n chromosome number to 1n. The spores are later released by the sporangia and disperse in the environment. Two different types of spores are produced in land plants, resulting in the separation of sexes at different points in the life cycle. Seedless nonvascular plants (more appropriately referred to as “seedless nonvascular plants with a dominant gametophyte phase”) produce only one kind of spore, and are called homosporous. After germinating from a spore, the gametophyte produces both male and female gametangia, usually on the same individual. In contrast, heterosporous plants produce two morphologically different types of spores. The male spores are called microspores because of their smaller size; the comparatively larger megaspores will develop into the female gametophyte. Heterospory is observed in a few seedless vascular plants and in all seed plants.

When the haploid spore germinates, it generates a multicellular gametophyte by mitosis. The gametophyte supports the zygote formed from the fusion of gametes and the resulting young sporophyte or vegetative form, and the cycle begins anew (Figure 14.3 and Figure 14.4).
The spores of seedless plants and the pollen of seed plants are surrounded by thick cell walls containing a tough polymer known as sporopollenin. This substance is characterized by long chains of organic molecules related to fatty acids and carotenoids, and gives most pollen its yellow color. Sporopollenin is unusually resistant to chemical and biological degradation. Its toughness explains the existence of well-preserved fossils of pollen. Sporopollenin was once thought to be an innovation of land plants; however, the green algae Coleochaetes is now known to form spores that contain sporopollenin.

Protection of the embryo is a major requirement for land plants. The vulnerable embryo must be sheltered from desiccation and other environmental hazards. In both seedless and seed plants, the female gametophyte provides nutrition, and in seed plants, the embryo is also protected as it develops into the new generation of sporophyte.

Figure 14.3 This life cycle of a fern shows alternation of generations with a dominant sporophyte stage. (credit “fern”: modification of work by Cory Zanker; credit “gametophyte”: modification of work by “Vimastra”/Wikimedia Commons)

Figure 14.4 This life cycle of a moss shows alternation of generations with a dominant gametophyte stage. (credit: modification of work by Mariana Ruiz Villareal)
Gametangia in the Seedless Plants

Gametangia (singular, gametangium) are structures on the gametophytes of seedless plants in which gametes are produced by mitosis. The male gametangium, the antheridium, releases sperm. Many seedless plants produce sperm equipped with flagella that enable them to swim in a moist environment to the archegonia, the female gametangium. The embryo develops inside the archegonium as the sporophyte.

Apical Meristems

The shoots and roots of plants increase in length through rapid cell division within a tissue called the **apical meristem** (Figure 14.5). The apical meristem is a cap of cells at the shoot tip or root tip made of undifferentiated cells that continue to proliferate throughout the life of the plant. Meristematic cells give rise to all the specialized tissues of the plant. Elongation of the shoots and roots allows a plant to access additional space and resources: light in the case of the shoot, and water and minerals in the case of roots. A separate meristem, called the lateral meristem, produces cells that increase the diameter of stems and tree trunks. Apical meristems are an adaptation to allow vascular plants to grow in directions essential to their survival: upward to greater availability of sunlight, and downward into the soil to obtain water and essential minerals.

![Figure 14.5](image.png)

This apple seedling is an example of a plant in which the apical meristem gives rise to new shoots and root growth.

Additional Land Plant Adaptations

As plants adapted to dry land and became independent of the constant presence of water in damp habitats, new organs and structures made their appearance. Early land plants did not grow above a few inches off the ground, and on these low mats, they competed for light. By evolving a shoot and growing taller, individual plants captured more light. Because air offers substantially less support than water, land plants incorporated more rigid molecules in their stems (and later, tree trunks). The evolution of vascular tissue for the distribution of water and solutes was a necessary prerequisite for plants to evolve larger bodies. The vascular system contains xylem and phloem tissues. Xylem conducts water and minerals taken from the soil up to the shoot; phloem transports food derived from photosynthesis throughout the entire plant. The root system that evolved to take up water and minerals also anchored the increasingly taller shoot in the soil.

In land plants, a waxy, waterproof cover called a cuticle coats the aerial parts of the plant: leaves and stems. The cuticle also prevents intake of carbon dioxide needed for the synthesis of carbohydrates through photosynthesis. Stomata, or pores, that open and close to regulate traffic of gases and water vapor therefore appeared in plants as they moved into drier habitats.

Plants cannot avoid predatory animals. Instead, they synthesize a large range of poisonous secondary metabolites: complex organic molecules such as alkaloids, whose noxious smells and unpleasant taste deter animals. These toxic compounds can cause severe diseases and even death.

Additionally, as plants coevolved with animals, sweet and nutritious metabolites were developed to lure animals into providing valuable assistance in dispersing pollen grains, fruit, or seeds. Plants have been coevolving with animal associates for hundreds of millions of years (Figure 14.6).
Figure 14.6 Plants have evolved various adaptations to life on land. (a) Early plants grew close to the ground, like this moss, to avoid desiccation. (b) Later plants developed a waxy cuticle to prevent desiccation. (c) To grow taller, like these maple trees, plants had to evolve new structural chemicals to strengthen their stems and vascular systems to transport water and minerals from the soil and nutrients from the leaves. (d) Plants developed physical and chemical defenses to avoid being eaten by animals. (credit a, b: modification of work by Cory Zanker; credit c: modification of work by Christine Cimala; credit d: modification of work by Jo Naylor)
Paleobotany

How organisms acquired traits that allow them to colonize new environments, and how the contemporary ecosystem is shaped, are fundamental questions of evolution. Paleobotany addresses these questions by specializing in the study of extinct plants. Paleobotanists analyze specimens retrieved from field studies, reconstituting the morphology of organisms that have long disappeared. They trace the evolution of plants by following the modifications in plant morphology, and shed light on the connection between existing plants by identifying common ancestors that display the same traits. This field seeks to find transitional species that bridge gaps in the path to the development of modern organisms. Fossils are formed when organisms are trapped in sediments or environments where their shapes are preserved (Figure 14.7). Paleobotanists determine the geological age of specimens and the nature of their environment using the geological sediments and fossil organisms surrounding them. The activity requires great care to preserve the integrity of the delicate fossils and the layers in which they are found.

One of the most exciting recent developments in paleobotany is the use of analytical chemistry and molecular biology to study fossils. Preservation of molecular structures requires an environment free of oxygen, since oxidation and degradation of material through the activity of microorganisms depend on the presence of oxygen. One example of the use of analytical chemistry and molecular biology is in the identification of oleanane, a compound that deters pests and which, up to this point, appears to be unique to flowering plants. Oleanane was recovered from sediments dating from the Permian, much earlier than the current dates given for the appearance of the first flowering plants. Fossilized nucleic acids—DNA and RNA—yield the most information. Their sequences are analyzed and compared to those of living and related organisms. Through this analysis, evolutionary relationships can be built for plant lineages.

Some paleobotanists are skeptical of the conclusions drawn from the analysis of molecular fossils. For one, the chemical materials of interest degrade rapidly during initial isolation when exposed to air, as well as in further manipulations. There is always a high risk of contaminating the specimens with extraneous material, mostly from microorganisms. Nevertheless, as technology is refined, the analysis of DNA from fossilized plants will provide invaluable information on the evolution of plants and their adaptation to an ever-changing environment.

The Major Divisions of Land Plants

Land plants are classified into two major groups according to the absence or presence of vascular tissue, as detailed in Figure 14.8. Plants that lack vascular tissue formed of specialized cells for the transport of water and nutrients are referred to as nonvascular plants. The bryophytes, liverworts, mosses, and hornworts are seedless and nonvascular, and likely appeared early in land plant evolution. Vascular plants developed a network of cells that conduct water and solutes through the plant body. The first vascular plants appeared in the late Ordovician (461–444 million years ago) and were probably similar to lycophytes, which include club mosses (not to be confused with the mosses) and the pterophytes (ferns, horsetails, and whisk ferns). Lycophytes and pterophytes are referred to as seedless vascular plants. They do not produce seeds, which are embryos with their stored food reserves protected by a hard casing. The seed plants form the largest group of all existing plants and, hence, dominate the landscape. Seed plants include gymnosperms, most notably conifers, which produce “naked
seeds,” and the most successful plants, the flowering plants, or angiosperms, which protect their seeds inside chambers at the center of a flower. The walls of these chambers later develop into fruits.

<table>
<thead>
<tr>
<th>Embryophytes: The Land Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonvascular Plants “Bryophytes”</td>
</tr>
<tr>
<td>Liverworts</td>
</tr>
<tr>
<td>Club Mosses</td>
</tr>
<tr>
<td>Quillworts</td>
</tr>
<tr>
<td>Spike Mosses</td>
</tr>
</tbody>
</table>

Figure 14.8 This table shows the major divisions of plants.

14.2 Seedless Plants

By the end of this section, you will be able to:

- Describe the distinguishing traits of the three types of bryophytes
- Identify the new traits that first appear in seedless vascular plants
- Describe the major classes of seedless vascular plants

An incredible variety of seedless plants populates the terrestrial landscape. Mosses grow on tree trunks, and horsetails ([Figure 14.9](#)) display their jointed stems and spindly leaves on the forest floor. Yet, seedless plants represent only a small fraction of the plants in our environment. Three hundred million years ago, seedless plants dominated the landscape and grew in the enormous swampy forests of the Carboniferous period. Their decomposing bodies created large deposits of coal that we mine today.

Figure 14.9 Seedless plants like these horsetails (*Equisetum* sp.) thrive in damp, shaded environments under the tree canopy where dryness is a rare occurrence. (credit: Jerry Kirkhart)

Bryophytes

Bryophytes, an informal grouping of the nonvascular plants, are the closest extant relative of early terrestrial plants. The first bryophytes most probably appeared in the Ordovician period, about 490 million years ago. Because of the lack of lignin—the tough polymer in cell walls in the stems of vascular plants—and other resistant structures, the likelihood of bryophytes forming fossils is rather small, though some spores made up of sporopollenin have been discovered that have been attributed to early bryophytes. By the Silurian period (440 million years ago), however, vascular plants had spread throughout the continents. This fact is used as evidence that nonvascular plants must have preceded the Silurian period.
There are about 18,000 species of bryophytes, which thrive mostly in damp habitats, although some grow in deserts. They constitute the major flora of inhospitable environments like the tundra, where their small size and tolerance to desiccation offer distinct advantages. They do not have the specialized cells that conduct fluids found in the vascular plants, and generally lack lignin. In bryophytes, water and nutrients circulate inside specialized conducting cells. Although the name nontracheophyte is more accurate, bryophytes are commonly referred to as nonvascular plants.

In a bryophyte, all the conspicuous vegetative organs belong to the haploid organism, or gametophyte. The diploid sporophyte is barely noticeable. The gametes formed by bryophytes swim using flagella. The sporangium, the multicellular sexual reproductive structure, is present in bryophytes. The embryo also remains attached to the parent plant, which nourishes it. This is a characteristic of land plants.

The bryophytes are divided into three divisions (in plants, the taxonomic level “division” is used instead of phylum): the liverworts, or Marchantiophyta; the hornworts, or Anthocerotophyta; and the mosses, or true Bryophyta.

Liverworts

Liverworts (Marchantiophyta) may be viewed as the plants most closely related to the ancestor that moved to land. Liverworts have colonized many habitats on Earth and diversified to more than 6,000 existing species (Figure 14.10a). Some gametophytes form lobate green structures, as seen in Figure 14.10b. The shape is similar to the lobes of the liver and, hence, provides the origin of the common name given to the division.

Hornworts

The hornworts (Anthocerotophyta) have colonized a variety of habitats on land, although they are never far from a source of moisture. There are about 100 described species of hornworts. The dominant phase of the life cycle of hornworts is the short, blue-green gametophyte. The sporophyte is the defining characteristic of the group. It is a long and narrow pipe-like structure that emerges from the parent gametophyte and maintains growth throughout the life of the plant (Figure 14.11).
Mosses

More than 12,000 species of mosses have been catalogued. Their habitats vary from the tundra, where they are the main vegetation, to the understory of tropical forests. In the tundra, their shallow rhizoids allow them to fasten to a substrate without digging into the frozen soil. They slow down erosion, store moisture and soil nutrients, and provide shelter for small animals and food for larger herbivores, such as the musk ox. Mosses are very sensitive to air pollution and are used to monitor the quality of air. The sensitivity of mosses to copper salts makes these salts a common ingredient of compounds marketed to eliminate mosses in lawns (Figure 14.12).

Vascular Plants

The vascular plants are the dominant and most conspicuous group of land plants. There are about 275,000 species of vascular plants, which represent more than 90 percent of Earth’s vegetation. Several evolutionary innovations explain their success and their spread to so many habitats.

Vascular Tissue: Xylem and Phloem

The first fossils that show the presence of vascular tissue are dated to the Silurian period, about 430 million years ago. The simplest arrangement of conductive cells shows a pattern of xylem at the center surrounded by phloem. Xylem is the tissue responsible for long-distance transport of water and minerals, the transfer of water-soluble growth factors from the organs of synthesis to the target organs, and storage of water and nutrients.

A second type of vascular tissue is phloem, which transports sugars, proteins, and other solutes through the plant. Phloem cells are divided into sieve elements, or conducting cells, and supportive tissue. Together, xylem and phloem tissues form the vascular system of plants.
Roots: Support for the Plant

Roots are not well preserved in the fossil record; nevertheless, it seems that they did appear later in evolution than vascular tissue. The development of an extensive network of roots represented a significant new feature of vascular plants. Thin rhizoids attached the bryophytes to the substrate. Their rather flimsy filaments did not provide a strong anchor for the plant; neither did they absorb water and nutrients. In contrast, roots, with their prominent vascular tissue system, transfer water and minerals from the soil to the rest of the plant. The extensive network of roots that penetrates deep in the ground to reach sources of water also stabilizes trees by acting as ballast and an anchor. The majority of roots establish a symbiotic relationship with fungi, forming mycorrhizae. In the mycorrhizae, fungal hyphae grow around the root and within the root around the cells, and in some instances within the cells. This benefits the plant by greatly increasing the surface area for absorption.

Leaves, Sporophylls, and Strobili

A third adaptation marks seedless vascular plants. Accompanying the prominence of the sporophyte and the development of vascular tissue, the appearance of true leaves improved photosynthetic efficiency. Leaves capture more sunlight with their increased surface area.

In addition to photosynthesis, leaves play another role in the life of the plants. Pinecones, mature fronds of ferns, and flowers are all sporophylls—leaves that were modified structurally to bear sporangia. Strobili are structures that contain the sporangia. They are prominent in conifers and are known commonly as cones: for example, the pine cones of pine trees.

Seedless Vascular Plants

By the Late Devonian period (385 million years ago), plants had evolved vascular tissue, well-defined leaves, and root systems. With these advantages, plants increased in height and size. During the Carboniferous period (359–299 million years ago), swamp forests of club mosses and horsetails, with some specimens reaching more than 30 meters tall, covered most of the land. These forests gave rise to the extensive coal deposits that gave the Carboniferous its name. In seedless vascular plants, the sporophyte became the dominant phase of the lifecycle.

Water is still required for fertilization of seedless vascular plants, and most favor a moist environment. Modern-day seedless vascular plants include club mosses, horsetails, ferns, and whisk ferns.

Club Mosses

The club mosses, or Lycophyta, are the earliest group of seedless vascular plants. They dominated the landscape of the Carboniferous period, growing into tall trees and forming large swamp forests. Today’s club mosses are diminutive, evergreen plants consisting of a stem (which may be branched) and small leaves called microphylls (Figure 14.13). The division Lycophyta consists of close to 1,000 species, including quillworts (Isoetales), club mosses (Lycopodiales), and spike mosses (Selaginellales): none of which is a true moss.

Horsetails

Ferns and whisk ferns belong to the division Pterophyta. A third group of plants in the Pterophyta, the horsetails, is sometimes classified separately from ferns. Horsetails have a single genus, Equisetum. They are the survivors of a large group of plants, known as Arthrophyta, which produced large trees and entire swamp forests in the Carboniferous. The plants are usually found in damp environments and marshes (Figure 14.14).
The stem of a horsetail is characterized by the presence of joints, or nodes: hence the name Arthrophyta, which means “jointed plant”. Leaves and branches come out as whorls from the evenly spaced rings. The needle-shaped leaves do not contribute greatly to photosynthesis, the majority of which takes place in the green stem (Figure 14.15).

Ferns and Whisk Ferns

Ferns are considered the most advanced seedless vascular plants and display characteristics commonly observed in seed plants. Ferns form large leaves and branching roots. In contrast, whisk ferns, the psilophytes, lack both roots and leaves, which were probably lost by evolutionary reduction. Evolutionary reduction is a process by which natural selection reduces the size of a structure that is no longer favorable in a particular environment. Photosynthesis takes place in the green stem of a whisk fern. Small yellow knobs form at the tip of the branch stem and contain the sporangia. Whisk ferns have been classified outside the true ferns; however, recent comparative analysis of DNA suggests that this group may have lost both vascular tissue and roots through evolution, and is actually closely related to ferns.

With their large fronds, ferns are the most readily recognizable seedless vascular plants (Figure 14.16). About 12,000 species of ferns live in environments ranging from tropics to temperate forests. Although some species survive in dry environments, most ferns are restricted to moist and shaded places. They made their appearance in the fossil record during
the Devonian period (416–359 million years ago) and expanded during the Carboniferous period, 359–299 million years ago (Figure 14.17).

![Short tree-fern species](credit: Adrian Pingstone)

Figure 14.16 Some specimens of this short tree-fern species can grow very tall. (credit: Adrian Pingstone)

<table>
<thead>
<tr>
<th>EON</th>
<th>Era</th>
<th>Period</th>
<th>Millions of Years Ago</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phanerozoic</td>
<td>Cenozoic</td>
<td>Quaternary</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tertiary</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Mesozoic</td>
<td>Cretaceous</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jurassic</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triassic</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permian</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>Paleozoic</td>
<td>Carboniferous</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Devonian</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silurian</td>
<td>435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ordovician</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambrian</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>Proterozoic</td>
<td>-2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Archean</td>
<td>3800?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-Archean</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 14.17 This chart shows the geological time scale, beginning with the Pre-Archean eon 3800 million years ago and ending with the Quaternary period in present time. (credit: modification of work by USGS)

Go to this [website](http://openstaxcollege.org/l/fern_life_cycl2) to see an animation of the lifecycle of a fern and to test your knowledge.
Looking at the well-laid gardens of flowers and fountains seen in royal castles and historic houses of Europe, it is clear that the creators of those gardens knew more than art and design. They were also familiar with the biology of the plants they chose. Landscape design also has strong roots in the United States' tradition. A prime example of early American classical design is Monticello, Thomas Jefferson's private estate; among his many other interests, Jefferson maintained a passion for botany. Landscape layout can encompass a small private space, like a backyard garden; public gathering places, like Central Park in New York City; or an entire city plan, like Pierre L’Enfant’s design for Washington, DC.

A landscape designer will plan traditional public spaces—such as botanical gardens, parks, college campuses, gardens, and larger developments—as well as natural areas and private gardens (Figure 14.18). The restoration of natural places encroached upon by human intervention, such as wetlands, also requires the expertise of a landscape designer.

With such an array of required skills, a landscape designer’s education includes a solid background in botany, soil science, plant pathology, entomology, and horticulture. Coursework in architecture and design software is also required for the completion of the degree. The successful design of a landscape rests on an extensive knowledge of plant growth requirements, such as light and shade, moisture levels, compatibility of different species, and susceptibility to pathogens and pests. For example, mosses and ferns will thrive in a shaded area where fountains provide moisture; cacti, on the other hand, would not fare well in that environment. The future growth of the individual plants must be taken into account to avoid crowding and competition for light and nutrients. The appearance of the space over time is also of concern. Shapes, colors, and biology must be balanced for a well-maintained and sustainable green space. Art, architecture, and biology blend in a beautifully designed and implemented landscape.

![Figure 14.18](credit: Myriam Feldman)

14.3 | Seed Plants: Gymnosperms

By the end of this section, you will be able to:

- Discuss the type of seeds produced by gymnosperms, as well as other characteristics of gymnosperms
- List the four groups of modern-day gymnosperms and provide examples of each

The first plants to colonize land were most likely closely related to modern-day mosses (bryophytes) and are thought to have appeared about 500 million years ago. They were followed by liverworts (also bryophytes) and primitive vascular plants,
the pterophytes, from which modern ferns are derived. The life cycle of bryophytes and pterophytes is characterized by the alternation of generations. The completion of the life cycle requires water, as the male gametes must swim to the female gametes. The male gametophyte releases sperm, which must swim—propelled by their flagella—to reach and fertilize the female gamete or egg. After fertilization, the zygote matures and grows into a sporophyte, which in turn will form sporangia, or "spore vessels," in which mother cells undergo meiosis and produce haploid spores. The release of spores in a suitable environment will lead to germination and a new generation of gametophytes.

The Evolution of Seed Plants

In seed plants, the evolutionary trend led to a dominant sporophyte generation, in which the larger and more ecologically significant generation for a species is the diploid plant. At the same time, the trend led to a reduction in the size of the gametophyte, from a conspicuous structure to a microscopic cluster of cells enclosed in the tissues of the sporophyte. Lower vascular plants, such as club mosses and ferns, are mostly homosporous (produce only one type of spore). In contrast, all seed plants, or spermatophytes, are heterosporous, forming two types of spores: megaspores (female) and microspores (male). Megaspores develop into female gametophytes that produce eggs, and microspores mature into male gametophytes that generate sperm. Because the gametophytes mature within the spores, they are not free-living, as are the gametophytes of other seedless vascular plants. Heterosporous seedless plants are seen as the evolutionary forerunners of seed plants.

Seeds and pollen—two adaptations to drought—distinguish seed plants from other (seedless) vascular plants. Both adaptations were critical to the colonization of land. Fossils place the earliest distinct seed plants at about 350 million years ago. The earliest reliable record of gymnosperms dates their appearance to the Carboniferous period (359–299 million years ago). Gymnosperms were preceded by the progymnosperms ("first naked seed plants"). This was a transitional group of plants that superficially resembled conifers ("cone bears") because they produced wood from the secondary growth of the vascular tissues; however, they still reproduced like ferns, releasing spores to the environment. In the Mesozoic era (251–65.5 million years ago), gymnosperms dominated the landscape. Angiosperms took over by the middle of the Cretaceous period (145.5–65.5 million years ago) in the late Mesozoic era, and have since become the most abundant plant group in most terrestrial biomes.

The two innovative structures of pollen and seed allowed seed plants to break their dependence on water for reproduction and development of the embryo, and to conquer dry land. The pollen grains carry the male gametes of the plant. The small haploid (1n) cells are encased in a protective coat that prevents desiccation (drying out) and mechanical damage. Pollen can travel far from the sporophyte that bore it, spreading the plant's genes and avoiding competition with other plants. The seed offers the embryo protection, nourishment and a mechanism to maintain dormancy for tens or even thousands of years, allowing it to survive in a harsh environment and ensuring germination when growth conditions are optimal. Seeds allow plants to disperse the next generation through both space and time. With such evolutionary advantages, seed plants have become the most successful and familiar group of plants.

Gymnosperms

Gymnosperms ("naked seed") are a diverse group of seed plants and are paraphyletic. Paraphyletic groups do not include descendants of a single common ancestor. Gymnosperm characteristics include naked seeds, separate female and male gametes, pollination by wind, and tracheids, which transport water and solutes in the vascular system.

Life Cycle of a Conifer

Pine trees are conifers and carry both male and female sporophylls on the same plant. Like all gymnosperms, pines are heterosporous and produce male microspores and female megaspores. In the male cones, or staminate cones, the microsporocytes give rise to microspores by meiosis. The microspores then develop into pollen grains. Each pollen grain contains two cells: one generative cell that will divide into two sperm, and a second cell that will become the pollen tube cell. In the spring, pine trees release large amounts of yellow pollen, which is carried by the wind. Some gametophytes will land on a female cone. The pollen tube grows from the pollen grain slowly, and the generative cell in the pollen grain divides into two sperm cells by mitosis. One of the sperm cells will finally unite its haploid nucleus with the haploid nucleus of an egg cell in the process of fertilization.

Female cones, or ovulate cones, contain two ovules per scale. One megasporocyte undergoes meiosis in each ovule. Only a single surviving haploid cell will develop into a female multicellular gametophyte that encloses an egg. On fertilization, the zygote will give rise to the embryo, which is enclosed in a seed coat of tissue from the parent plant. Fertilization and seed development is a long process in pine trees—it may take up to two years after pollination. The seed that is formed contains three generations of tissues: the seed coat that originates from the parent plant tissue, the female gametophyte that will provide nutrients, and the embryo itself. Figure 14.19 illustrates the life cycle of a conifer.
At what stage does the diploid zygote form?

a. when the female cone begins to bud from the tree
b. when the sperm nucleus and the egg nucleus fuse
c. when the seeds drop from the tree
d. when the pollen tube begins to grow

Diversity of Gymnosperms

Modern gymnosperms are classified into four major divisions and comprise about 1,000 described species. Coniferophyta, Cycadophyta, and Ginkgophyta are similar in their production of secondary cambium (cells that generate the vascular system of the trunk or stem) and their pattern of seed development, but are not closely related phylogenetically to each other. Gnetophyta are considered the closest group to angiosperms because they produce true xylem tissue that contains both tracheids and vessel elements.
Conifers

Conifers are the dominant phylum of gymnosperms, with the most variety of species. Most are tall trees that usually bear scale-like or needle-like leaves. The thin shape of the needles and their waxy cuticle limits water loss through transpiration. Snow slides easily off needle-shaped leaves, keeping the load light and decreasing breaking of branches. These adaptations to cold and dry weather explain the predominance of conifers at high altitudes and in cold climates. Conifers include familiar evergreen trees, such as pines, spruces, firs, cedars, sequoias, and yews (Figure 14.20). A few species are deciduous and lose their leaves all at once in fall. The European larch and the tamarack are examples of deciduous conifers. Many coniferous trees are harvested for paper pulp and timber. The wood of conifers is more primitive than the wood of angiosperms; it contains tracheids, but no vessel elements, and is referred to as “soft wood.”

![Figure 14.20](image)

Cycads

Cycads thrive in mild climates and are often mistaken for palms because of the shape of their large, compound leaves. They bear large cones, and unusually for gymnosperms, may be pollinated by beetles, rather than wind. They dominated the landscape during the age of dinosaurs in the Mesozoic era (251–65.5 million years ago). Only a hundred or so cycad species persisted to modern times. They face possible extinction, and several species are protected through international conventions. Because of their attractive shape, they are often used as ornamental plants in gardens (Figure 14.21).
Ginkophytes

The single surviving species of ginkophyte is the *Ginkgo biloba* (Figure 14.22). Its fan-shaped leaves, unique among seed plants because they feature a dichotomous venation pattern, turn yellow in autumn and fall from the plant. For centuries, Buddhist monks cultivated *Ginkgo biloba*, ensuring its preservation. It is planted in public spaces because it is unusually resistant to pollution. Male and female organs are found on separate plants. Usually, only male trees are planted by gardeners because the seeds produced by the female plant have an off-putting smell of rancid butter.

Gnetophytes

Gnetophytes are the closest relatives to modern angiosperms, and include three dissimilar genera of plants. Like angiosperms, they have broad leaves. *Gnetum* species are mostly vines in tropical and subtropical zones. The single species of *Welwitschia* is an unusual, low-growing plant found in the deserts of Namibia and Angola. It may live for up to 2000 years.
years. The genus *Ephedra* is represented in North America in dry areas of the southwestern United States and Mexico (Figure 14.23). *Ephedra*’s small, scale-like leaves are the source of the compound ephedrine, which is used in medicine as a potent decongestant. Because ephedrine is similar to amphetamines, both in chemical structure and neurological effects, its use is restricted to prescription drugs. Like angiosperms, but unlike other gymnosperms, all gnetophytes possess vessel elements in their xylem.

![Image of Ephedra viridis](http://openstaxcollege.org/l/welwitschia)

Figure 14.23 *Ephedra viridis*, known by the common name Mormon tea, grows in the western United States. (credit: US National Park Service, USDA-NRCS PLANTS Database)

Watch this BBC video (http://openstaxcollege.org/l/welwitschia) describing the amazing strangeness of Welwitschia.

14.4 | Seed Plants: Angiosperms

By the end of this section, you will be able to:

- Describe the main parts of a flower and their purpose
- Detail the life cycle of an angiosperm
- Discuss the two main groups into which flower plants are divided, as well as explain how basal angiosperms differ from others

From their humble and still obscure beginning during the early Jurassic period (202–145.5 MYA), the angiosperms, or flowering plants, have successfully evolved to dominate most terrestrial ecosystems. Angiosperms include a staggering number of genera and species; with more than 260,000 species, the division is second only to insects in terms of diversification (Figure 14.24).
Angiosperm success is a result of two novel structures that ensure reproductive success: flowers and fruit. Flowers allowed plants to form cooperative evolutionary relationships with animals, in particular insects, to disperse their pollen to female gametophytes in a highly targeted way. Fruit protect the developing embryo and serve as an agent of dispersal. Different structures on fruit reflect the dispersal strategies that help with the spreading of seeds.

Flowers

Flowers are modified leaves or sporophylls organized around a central stalk. Although they vary greatly in appearance, all flowers contain the same structures: sepals, petals, pistils, and stamens. A whorl of sepals (the calyx) is located at the base of the peduncle, or stem, and encloses the floral bud before it opens. Sepals are usually photosynthetic organs, although there are some exceptions. For example, the corolla in lilies and tulips consists of three sepals and three petals that look virtually identical—this led botanists to coin the word tepal. Petals (collectively the corolla) are located inside the whorl of sepals and usually display vivid colors to attract pollinators. Flowers pollinated by wind are usually small and dull. The sexual organs are located at the center of the flower.

As illustrated in Figure 14.25, the stigma, style, and ovary constitute the female organ, the carpel or pistil, which is also referred to as the gynoecium. A gynoecium may contain one or more carpels within a single flower. The megaspores and the female gametophytes are produced and protected by the thick tissues of the carpel. A long, thin structure called a style leads from the sticky stigma, where pollen is deposited, to the ovary enclosed in the carpel. The ovary houses one or more ovules that will each develop into a seed upon fertilization. The male reproductive organs, the androecium or stamens, surround the central carpel. Stamens are composed of a thin stalk called a filament and a sac-like structure, the anther, in which microspores are produced by meiosis and develop into pollen grains. The filament supports the anther.
Figure 14.25 This image depicts the structure of a perfect and complete flower. Perfect flowers carry both male and female floral organs. (credit: modification of work by Mariana Ruiz Villareal)

Fruit

The seed forms in an ovary, which enlarges as the seeds grow. As the seed develops, the walls of the ovary also thicken and form the fruit. In botany, a fruit is a fertilized and fully grown, ripened ovary. Many foods commonly called vegetables are actually fruit. Eggplants, zucchini, string beans, and bell peppers are all technically fruit because they contain seeds and are derived from the thick ovary tissue. Acorns and winged maple keys, whose scientific name is a samara, are also fruit.

Mature fruit can be described as fleshy or dry. Fleshy fruit include the familiar berries, peaches, apples, grapes, and tomatoes. Rice, wheat, and nuts are examples of dry fruit. Another distinction is that not all fruits are derived from the ovary. Some fruits are derived from separate ovaries in a single flower, such as the raspberry. Other fruits, such as the pineapple, form from clusters of flowers. Additionally, some fruits, like watermelon and orange, have rinds. Regardless of how they are formed, fruits are an agent of dispersal. The variety of shapes and characteristics reflect the mode of dispersal. The light, dry fruits of trees and dandelions are carried by the wind. Floating coconuts are transported by water. Some fruits are colored, perfumed, sweet, and nutritious to attract herbivores, which eat the fruit and disperse the tough undigested seeds in their feces. Other fruits have burs and hooks that cling to fur and hitch rides on animals.

The Life Cycle of an Angiosperm

The adult, or sporophyte, phase is the main phase in an angiosperm’s life cycle. Like gymnosperms, angiosperms are heterosporous. They produce microspores, which develop into pollen grains (the male gametophytes), and megaspores, which form an ovule containing the female gametophytes. Inside the anthers’ microsporangia (Figure 14.26), male microsporocytes divide by meiosis, generating haploid microspores that undergo mitosis and give rise to pollen grains. Each pollen grain contains two cells: one generative cell that will divide into two sperm, and a second cell that will become the pollen tube cell.
If a flower lacked a megasporangium, what type of gamete would it not be able to form? If it lacked a microsporangium, what type of gamete would not form?

In the ovules, the female gametophyte is produced when a megasporocyte undergoes meiosis to produce four haploid megaspores. One of these is larger than the others and undergoes mitosis to form the female gametophyte or embryo sac. Three mitotic divisions produce eight nuclei in seven cells. The egg and two cells move to one end of the embryo sac (gametophyte) and three cells move to the other end. Two of the nuclei remain in a single cell and fuse to form a 2n nucleus; this cell moves to the center of the embryo sac.

When a pollen grain reaches the stigma, a pollen tube extends from the grain, grows down the style, and enters through an opening in the integuments of the ovule. The two sperm cells are deposited in the embryo sac.
What occurs next is called a double fertilization event (Figure 14.27) and is unique to angiosperms. One sperm and the egg combine, forming a diploid zygote—the future embryo. The other sperm fuses with the diploid nucleus in the center of the embryo sac, forming a triploid cell that will develop into the endosperm: a tissue that serves as a food reserve. The zygote develops into an embryo with a radicle, or small root, and one or two leaf-like organs called cotyledons. Seed food reserves are stored outside the embryo, and the cotyledons serve as conduits to transmit the broken-down food reserves to the developing embryo. The seed consists of a toughened layer of integuments forming the coat, the endosperm with food reserves and, at the center, the well-protected embryo.

Most flowers carry both stamens and carpels; however, a few species self-pollinate. These are known as “perfect” flowers because they contain both types of sex organs (Figure 14.25). Biochemical and anatomical barriers to self-pollination promote cross-pollination. Self-pollination is a severe form of inbreeding, and can increase the number of genetic defects in offspring.

A plant may have perfect flowers, and thus have both genders in each flower; or, it may have imperfect flowers of both kinds on one plant (Figure 14.28). In each case, such species are called monoecious plants, meaning “one house.” Some botanists refer to plants with perfect flowers simply as hermaphroditic. Some plants are dioecious, meaning “two houses,” and have male and female flowers (“imperfect flowers”) on different plants. In these species, cross-pollination occurs all the time.

Diversity of Angiosperms

Angiosperms are classified in a single division, the Anthophyta. Modern angiosperms appear to be a monophyletic group, which means that they originate from a single ancestor. Flowering plants are divided into two major groups, according to the structure of the cotyledons, the pollen grains, and other features: monocots, which include grasses and lilies, and eudicots.
or dicots, a polyphyletic group. Basal angiosperms are a group of plants that are believed to have branched off before the separation into monocots and eudicots because they exhibit traits from both groups. They are categorized separately in many classification schemes, and correspond to a grouping known as the Magnoliidae. The Magnoliidae group is comprised of magnolia trees, laurels, water lilies, and the pepper family.

Basal Angiosperms

The Magnoliidae are represented by the magnolias: tall trees that bear large, fragrant flowers with many parts, and are considered archaic (Figure 14.29d). Laurel trees produce fragrant leaves and small inconspicuous flowers. The Laurales are small trees and shrubs that grow mostly in warmer climates. Familiar plants in this group include the bay laurel, cinnamon, spice bush (Figure 14.29a), and the avocado tree. The Nymphaeales are comprised of the water lilies, lotus (Figure 14.29c), and similar plants. All species of the Nymphaeales thrive in freshwater biomes, and have leaves that float on the water surface or grow underwater. Water lilies are particularly prized by gardeners, and have graced ponds and pools since antiquity. The Piperales are a group of herbs, shrubs, and small trees that grow in tropical climates. They have small flowers without petals that are tightly arranged in long spikes. Many species are the source of prized fragrances or spices; for example, the berries of *Piper nigrum* (Figure 14.29b) are the familiar black pepper that is used to flavor many dishes.

Monocots

Plants in the monocot group have a single cotyledon in the seedling, and also share other anatomical features. Veins run parallel to the length of the leaves, and flower parts are arranged in a three- or six-fold symmetry. The pollen from the first angiosperms was monosulcate (containing a single furrow or pore through the outer layer). This feature is still seen in the modern monocots. True woody tissue is rarely found in monocots, and the vascular tissue of the stem is not arranged in any particular pattern. The root system is mostly adventitious (unusually positioned) with no major taproot. The monocots include familiar plants such as the true lilies (not to be confused with the water lilies), orchids, grasses, and palms. Many
important crops, such as rice and other cereals (Figure 14.30a), corn, sugar cane, and tropical fruit, including bananas and pineapple, belong to the monocots.

![Image](148x473 to 464x707)

Figure 14.30 The major crops in the world are flowering plants. One staple food, (a) rice, is a monocot, as are other cereals, while (b) beans are eudicots. Some popular flowers, such as this (c) lily are monocots; while others, such as this (d) daisy are eudicots. (credit a: modification of work by David Nance; credit b: modification of work by USDA, ARS; credit c: modification of work by "longhorndave"/Flickr; credit d: modification of work by "Cellulaer"/NinjaPhoto)

Eudicots

Eudicots, or true dicots, are characterized by the presence of two cotyledons. Veins form a network in leaves. Flower parts come in four, five, or many whorls. Vascular tissue forms a ring in the stem. (In monocots, vascular tissue is scattered in the stem.) Eudicots can be herbaceous (like dandelions or violets), or produce woody tissues. Most eudicots produce pollen that is trisulcate or triporate, with three furrows or pores. The root system is usually anchored by one main root developed from the embryonic radicle. Eudicots comprise two-thirds of all flowering plants. Many species seem to exhibit characteristics that belong to either group; therefore, the classification of a plant as a monocot or a eudicot is not always clearly evident (Table 14.1).

Comparison of Structural Characteristics of Monocots and Eudicots

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Monocot</th>
<th>Eudicot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotyledon</td>
<td>One</td>
<td>Two</td>
</tr>
<tr>
<td>Veins in leaves</td>
<td>Parallel</td>
<td>Network (branched)</td>
</tr>
<tr>
<td>Vascular tissue</td>
<td>Scattered</td>
<td>Arranged in ring pattern</td>
</tr>
<tr>
<td>Roots</td>
<td>Network of adventitious roots</td>
<td>Tap root with many lateral roots</td>
</tr>
<tr>
<td>Pollen</td>
<td>Monosulcate</td>
<td>Trisulcate</td>
</tr>
<tr>
<td>Flower parts</td>
<td>Three or multiple of three</td>
<td>Four, five, multiple of four or five and whorls</td>
</tr>
</tbody>
</table>

Table 14.1
Explore this website (http://openstaxcollege.org/l/pollinators) for more information on pollinators.
KEY TERMS

anther a sac-like structure at the tip of the stamen in which pollen grains are produced

Anthophyta the division to which angiosperms belong

apical meristem the growing point in a vascular plant at the tip of a shoot or root where cell division occurs

basal angiosperms a group of plants that probably branched off before the separation of monocots and eudicots

calyx the whorl of sepals

carpel the female reproductive part of a flower consisting of the stigma, style, and ovary

club moss the earliest group of seedless vascular plants

cone the ovulate strobilus on gymnosperms that contains ovules

conifer the dominant division of gymnosperms with the most variety of species

corolla the collection of petals

cotyledon the one (monocot) or two (dicot) primitive leaves present in a seed

cycad a division of gymnosperms that grow in tropical climates and resemble palm trees

dicot a group of angiosperms whose embryos possess two cotyledons; also known as eudicot

diploontic describes a life cycle in which the diploid stage is the dominant stage

eudicots a group of angiosperms whose embryos possess two cotyledons; also known as dicot

fern a seedless vascular plant that produces large fronds; the most advanced group of seedless vascular plants

filament the thin stalk that links the anther to the base of the flower

gametangium (plural: gametangia) the structure within which gametes are produced

gametophyte the haploid plant that produces gametes

ginkophyte a division of gymnosperm with one living species, the *Gingko biloba*, a tree with fan-shaped leaves

gnetophyte a division of gymnosperms with varied morphological features that produce vessel elements in their woody tissues

gymnosperm a seed plant with naked seeds (seeds exposed on modified leaves or in cones)

gynoecium the group of structures that constitute the female reproductive organ; also called the pistil

haplo-diploontic describes a life cycle in which the haploid and diploid stages alternate; also known as an alternation of generations life cycle

haploontic describes a life cycle in which the haploid stage is the dominant stage

herbaceous describes a plant without woody tissue

heterosporous having two kinds of spores that give rise to male and female gametophytes

homosporous having one kind of spore that gives rise to gametophytes that give rise to both male and female gametes

hornwort a group of non-vascular plants in which stomata appear

horsetail a seedless vascular plant characterized by a jointed stem
liverwort the most primitive group of non-vascular plants

megasporocyte a megaspore mother cell; larger spore that germinates into a female gametophyte in a heterosporous plant

microsporocyte smaller spore that produces a male gametophyte in a heterosporous plant

monocot a related group of angiosperms that produce embryos with one cotyledon and pollen with a single ridge

moss a group of plants in which a primitive conductive system appears

nonvascular plant a plant that lacks vascular tissue formed of specialized cells for the transport of water and nutrients

ovary the chamber that contains and protects the ovule or female megasporangium

petal a modified leaf interior to the sepal; colorful petals attract animal pollinator

phloem the vascular tissue responsible for transport of sugars, proteins, and other solutes

pistil the group of structures that constitute the female reproductive organ; also called the carpel

sepal a modified leaf that encloses the bud; outermost structure of a flower

sporangium (plural: sporangia) the organ within which spores are produced

sporophyll a leaf modified structurally to bear sporangia

sporophyte the diploid plant that produces spores

stamen the group of structures that contain the male reproductive organs

stigma uppermost structure of the carpel where pollen is deposited

strobili cone-like structures that contain the sporangia

style the long thin structure that links the stigma to the ovary

syngamy the union of two gametes in fertilization

vascular plant a plant in which there is a network of cells that conduct water and solutes through the organism

whisk fern a seedless vascular plant that lost roots and leaves by evolutionary reduction

xylem the vascular tissue responsible for long-distance transport of water and nutrients

CHAPTER SUMMARY

14.1 The Plant Kingdom

Land plants evolved traits that made it possible to colonize land and survive out of water. Adaptations to life on land include vascular tissues, roots, leaves, waxy cuticles, and a tough outer layer that protects the spores. Land plants include nonvascular plants and vascular plants. Vascular plants, which include seedless plants and plants with seeds, have apical meristems, and embryos with nutritional stores. All land plants share the following characteristics: alternation of generations, with the haploid plant called a gametophyte and the diploid plant called a sporophyte; formation of haploid spores in a sporangium; and formation of gametes in a gametangium.

14.2 Seedless Plants

Seedless nonvascular plants are small. The dominant stage of the life cycle is the gametophyte. Without a vascular system and roots, they absorb water and nutrients through all of their exposed surfaces. There are three main groups: the liverworts, the hornworts, and the mosses. They are collectively known as bryophytes.
Vascular systems consist of xylem tissue, which transports water and minerals, and phloem tissue, which transports sugars and proteins. With the vascular system, there appeared leaves—large photosynthetic organs—and roots to absorb water from the ground. The seedless vascular plants include club mosses, which are the most primitive; whisk ferns, which lost leaves and roots by reductive evolution; horsetails, and ferns.

14.3 Seed Plants: Gymnosperms

Gymnosperms are heterosporous seed plants that produce naked seeds. They appeared in the Carboniferous period (359–299 million years ago) and were the dominant plant life during the Mesozoic era (251–65.5 million years ago). Modern-day gymnosperms belong to four divisions. The division Coniferophyta—the conifers—are the predominant woody plants at high altitudes and latitudes. Cycads resemble palm trees and grow in tropical climates. *Gingko biloba* is the only species of the division Gingkophyta. The last division, the Gnetophytes, is a diverse group of species that produce vessel elements in their wood.

14.4 Seed Plants: Angiosperms

Angiosperms are the dominant form of plant life in most terrestrial ecosystems, comprising about 90 percent of all plant species. Most crop and ornamental plants are angiosperms. Their success results, in part, from two innovative structures: the flower and the fruit. Flowers are derived evolutionarily from modified leaves. The main parts of a flower are the sepals and petals, which protect the reproductive parts: the stamens and the carpels. The stamens produce the male gametes, which are pollen grains. The carpels contain the female gametes, which are the eggs inside ovaries. The walls of the ovary thicken after fertilization, ripening into fruit that can facilitate seed dispersal.

Angiosperms’ life cycles are dominated by the sporophyte stage. Double fertilization is an event unique to angiosperms. The flowering plants are divided into two main groups—the monocots and eudicots—according to the number of cotyledons in the seedlings. Basal angiosperms belong to a lineage older than monocots and eudicots.

ART CONNECTION QUESTIONS

1. **Figure 14.19** At what stage does the diploid zygote form?
 a. When the female cone begins to bud from the tree
 b. When the sperm nucleus and the egg nucleus fuse
 c. When the seeds drop from the tree
 d. When the pollen tube begins to grow

2. **Figure 14.26** If a flower lacked a megasporangium, what type of gamete would it not be able to form? If it lacked a microsporangium, what type of gamete would not form?

REVIEW QUESTIONS

3. The land plants are probably descendants of which of these groups?
 a. green algae
 b. red algae
 c. brown algae
 d. angiosperms

4. The event that leads from the haploid stage to the diploid stage in alternation of generations is ________.
 a. meiosis
 b. mitosis
 c. fertilization
 d. germination

5. Moss is an example of which type of plant?
 a. haplontic plant
 b. vascular plant
 c. diplontic plant
 d. seed plant

6. Why do mosses grow well in the Arctic tundra?
 a. They grow better at cold temperatures.
 b. They do not require moisture.
 c. They do not have true roots and can grow on hard surfaces.
 d. There are no herbivores in the tundra.

7. Which is the most diverse group of seedless vascular plants?
 a. the liverworts
 b. the horsetails
 c. the club mosses
 d. the ferns

8. Which group are vascular plants?
 a. liverworts
 b. mosses
 c. hornworts
 d. ferns
9. Which of the following traits characterizes gymnosperms?
 a. The plants carry exposed seeds on modified leaves.
 b. Reproductive structures are located in a flower.
 c. After fertilization, the ovary thickens and forms a fruit.
 d. The gametophyte is longest phase of the life cycle.

10. What adaptation do seed plants have in addition to the seed that is not found in seedless plants?
 a. gametophytes
 b. vascular tissue
 c. pollen

CRITICAL THINKING QUESTIONS

13. What adaptations do plants have that allow them to survive on land?

14. What are the three classes of bryophytes?

15. How did the development of a vascular system contribute to the increase in size of plants?

16. What are the four modern-day groups of gymnosperms?

17. Cycads are considered endangered species and their trade is severely restricted. Customs officials stop suspected smugglers, who claim that the plants in their possession are palm trees and not cycads. How would a botanist distinguish between the two types of plants?

18. What are the two structures that allow angiosperms to be the dominant form of plant life in most terrestrial ecosystems?
that extends the 3' end, so a primer is synthesized and extended. Thus, the ends are protected. The cell controls which protein is expressed, and to what level that protein is expressed, in the cell. Prokaryotic cells alter the transcription rate to turn genes on or off. This method will increase or decrease protein levels in response to what is needed by the cell. Eukaryotic cells change the accessibility (epigenetic), transcription, or translation of a gene. This will alter the amount of RNA, and the lifespan of the RNA, to alter the amount of protein that exists. Eukaryotic cells also change the protein's translation to increase or decrease its overall levels. Eukaryotic organisms are much more complex and can manipulate protein levels by changing many stages in the process.

Chapter 10

1 Figure 10.7 Because even though the original cell came from a Scottish Blackface sheep and the surrogate mother was a Scottish Blackface, the DNA came from a Finn-Dorset. 2 B 4 A 6 C 8 D 10 The polymerase chain reaction is used to quickly produce many copies of a specific segment of DNA when only one or a very few copies are originally present. The benefit of PCR is that there are many instances in which we would like to know something about a sample of DNA when only very small amounts are available. PCR allows us to increase the number of DNA molecules so that other tests, such as sequencing, can be performed with it. 12 Genome mapping helps researchers to study disease-causing genes in humans. It also helps to identify traits of organisms that can be used in applications such as cleaning up pollution.

Chapter 11

1 Figure 11.7 Genetic drift is likely to occur more rapidly on an island, where smaller populations are expected to occur. 2 B 4 C 6 C 8 C 10 A 12 B 14 B 15 The plants that can best use the resources of the area, including competing with other individuals for those resources, will produce more seeds themselves and those traits that allowed them to better use the resources will increase in the population of the next generation. 17 The theory of natural selection stems from the observation that some individuals in a population survive longer and have more offspring than others, thus passing on more of their genes to the next generation. For example, a big, powerful male gorilla is much more likely than a smaller, weaker gorilla to become the population’s silverback, the pack’s leader who mates far more than the other males of the group. The pack leader will, therefore, father more offspring, who share half of his genes, and are thus likely to also grow bigger and stronger like their father. Over time, the genes for bigger size will increase in frequency in the population, and the population will, as a result, grow larger on average. 19 Organisms of one species can arrive to an island together and then disperse throughout the chain, each settling into different niches, exploiting different food resources and, evolving independently with little gene flow between different islands. 21 In science, a theory is a thoroughly tested and verified set of explanations for a body of observations of nature. It is the strongest form of knowledge in science. In contrast, a theory in common usage can mean a guess or speculation about something, meaning that the knowledge implied by the theory may be very weak.

Chapter 12

1 Figure 12.3 Cats and dogs are part of the same group at five levels: both are in the domain Eukarya, the kingdom Animalia, the phylum Chordata, the class Mammalia, and the order Carnivora. 3 C 5 D 7 B 9 A 11 B 13 The phylogenetic tree shows the order in which evolutionary events took place and in what order certain characteristics and organisms evolved in relation to others. It does not generally indicate time durations. 15 Dolphins are mammals and fish are not, which means that their evolutionary paths (phylogenies) are quite separate. Dolphins probably adapted to have a similar body plan after returning to an aquatic lifestyle, and therefore this trait is probably analogous. 17 The biologist looks at the state of the character in an outgroup, an organism that is outside the clade for which the phylogeny is being developed. The polarity of the character change is from the state of the character in the outgroup to the second state.

Chapter 13

1 Figure 13.6 A 2 B 4 D 6 C 8 D 10 C 12 C 14 Antibiotics kill bacteria that are sensitive to them; thus, only the resistant ones will survive. These resistant bacteria will reproduce, and therefore, after a while, there will be only resistant bacteria, making it more difficult to treat the diseases they may cause in humans. 16 Eukaryote cells arose through endosymbiotic events that gave rise to energy-producing organelles within the eukaryotic cells, such as mitochondria and plastids. The nuclear genome of eukaryotes is related most closely to the Archaea, so it may have been an early archaean that engulfed a bacterial cell that evolved into a mitochondrion. Mitochondria appear to have originated from an alpha-proteobacterium, whereas chloroplasts originated from a cyanobacterium. There is also evidence of secondary endosymbiotic events. Other cell components may have resulted from endosymbiotic events. 18 The trypanosomes that cause this disease are capable of expressing a glycoprotein coat with a different molecular structure with each generation. Because the immune system must respond to specific antigens to raise a meaningful defense, the changing nature of trypanosome antigens prevents the immune system from ever clearing this infection. Massive trypanosome infection eventually leads to host organ failure and death.

Chapter 14

1 Figure 14.19 B. The diploid zygote forms after the pollen tube has finished forming so that the male generative nucleus (sperm) can fuse with the female egg. 3 A 5 A 7 D 9 A 11 A 13 The sporangium of plants protects the spores from drying out. Apical
meristems ensure that a plant is able to grow in the two directions required to acquire water and nutrients: up toward sunlight and down into the soil. The multacellular embryo is an important adaptation that improves survival of the developing plant in dry environments. The development of molecules that gave plants structural strength allowed them to grow higher on land and obtain more sunlight. A waxy cuticle prevents water loss from aerial surfaces. It became possible to transport water and nutrients through the plant and not be limited by rates of diffusion. Vascularization allowed the development of leaves, which increased efficiency of photosynthesis and provided more energy for plant growth. The resemblance between cycads and palm trees is only superficial. Cycads are gymnosperms and do not bear flowers or fruit. Unlike palms, cycads produce cones; large, female cones that produce naked seeds, and smaller male cones on separate plants.

Chapter 15

1 Figure 15.3 B 3 Figure 15.33 A 4 B 6 D 8 B 10 A 12 B 14 C 16 C 18 A 20 Specialized tissues allow more efficient functioning because differentiated tissue types can perform unique functions and work together in tandem to allow the animal to perform more functions. For example, specialized muscle tissue allows directed and efficient movement, and specialized nervous tissue allows for multiple sensory modalities as well as the ability to respond to various sensory information; these functions are not necessarily available to other non-animal organisms. 22 The sponges draw water carrying food particles into the spongocoel using the beating of flagella in the choanocytes. The food particles are caught by the collar of the choanocyte and brought into the cell by phagocytosis. Digestion of the food particle takes place inside the cell. The difference between this and the mechanisms of other animals is that digestion takes place within cells rather than outside of cells. It means that the organism can feed only on particles smaller than the cells themselves. 24 In a complete digestive system, food material is not mixed with waste material, so the digestion and uptake of nutrients can be more efficient. In addition, the complete digestive system allows for an orderly progression of digestion of food matter and the specialization of different zones of the digestive tract. 26 Mollusks have a large muscular foot that may be modified in various ways, such as into tentacles, but it functions in locomotion. They have a mantle, a structure of tissue that covers and encloses the dorsal portion of the animal and secretes the shell when it is present. The mantle encloses the mantle cavity, which houses the gills (when present), excretory pores, anus, and gonadopores. The coelom of mollusks is restricted to the region around the systemic heart. The main body cavity is a hemocoel. Many mollusks have a radula near the mouth that is used for scraping food. During embryonic development, we also have a notochord, a dorsal hollow nerve tube, pharyngeal slits, and a post-anal tail. 30 A moist environment is required as frog eggs lack a shell and dehydrate quickly in dry environments.

Chapter 16

1 Figure 16.2 Pyrogens increase body temperature by causing the blood vessels to constrict, inducing shivering, and stopping sweat glands from secreting fluid. 3 Figure 16.9 B 5 Figure 16.14 A 6 C 8 B 10 C 12 A 14 C 16 A 18 A 20 A 22 B 24 C 26 A 27 The body has a sensor that detects a deviation of the state of the cells or the body from the set point. The information is relayed to a control center, usually the brain, where signals go to effectors. Those effectors cause a negative feedback response that moves the state of the body in a direction back toward the set point. 29 Accessory organs play an important role in producing and delivering digestive juices to the intestine during digestion and absorption. Specifically, the salivary glands, liver, pancreas, and gallbladder play important roles. Malfunction of any of these organs can lead to disease states. In the United States, obesity, particularly childhood obesity, is a growing concern. Some of the contributors to this situation include sedentary lifestyles and consuming more processed foods and less fruits and vegetables. As a result, even young children who are obese can face health concerns. 33 The sac-like structure of the alveoli increases their surface area. In addition, the alveoli are made of thin-walled cells. These features allows gases to easily diffuse across the cells. 35 The cells of both exocrine and endocrine glands produce a product that will be secreted by the gland. An exocrine gland has a duct and secretes its product to the outside of the gland, not into the bloodstream. An endocrine gland secretes its product into the bloodstream and does not use a duct. 37 Blood-glucose levels are regulated by hormones produced by the pancreas: insulin and glucagon. When blood-glucose levels are increasing, the pancreas releases insulin, which stimulates uptake of glucose by cells. When blood-glucose levels are decreasing, the pancreas releases glucagon, which stimulates the release of stored glucose by the liver to the bloodstream. 39 Neurons contain organelles common to all cells, such as a nucleus and mitochondria. They are unique because they contain dendrites, which can receive signals from other neurons, and axons that can send these signals to other cells. 41 The sympathetic nervous system prepares the body for “fight or flight,” whereas the parasympathetic nervous system allows the body to “rest and digest.” Sympathetic neurons release norepinephrine onto target organs; parasympathetic neurons release acetylcholine. Sympathetic neuron cell bodies are located in sympathetic ganglia. Parasympathetic neuron cell bodies are located in the brainstem and sacral spinal cord. Activation of the sympathetic nervous system increases heart rate and blood pressure and decreases digestion and blood flow to the skin. Activation of the parasympathetic nervous system decreases heart rate and blood pressure and increases digestion and blood flow to the skin.

Chapter 17

1 Figure 17.5 D 3 Figure 17.17 If the blood of the mother and fetus mixes, memory cells that recognize the Rh antigen of the fetus can form in the mother late in the first pregnancy. During subsequent pregnancies, these memory cells launch an immune attack on the fetal blood cells of an Rh-positive fetus. Injection of anti-Rh antibody during the first pregnancy prevents the immune response from occurring. 4 B 6 B 8 B 10 C 12 A 14 B 16 The virus cannot attach to dog cells because dog cells do not express the receptors for the virus or there is no cell within the dog that is permissive for viral replication. 18 If the MHC class...
INDEX

A

absorption spectrum, 124, 132
abyssal zone, 556, 563
acellular, 450, 472
acetyl CoA, 104, 113
acid, 51
Acid rain, 547
acid rain, 563
Acids, 38
acoelomate, 395
acoelomates, 360
Actinopterygii, 387, 395
action potential, 432, 440
activation energy, 97, 113
active immunity, 461, 472
active site, 98, 113
Active transport, 81
active transport, 85
adaptation, 253, 270
Adaptive immunity, 460
adaptive immunity, 472
adaptive radiation, 264, 270
adhesion, 37, 51
adrenal gland, 440
adrenal glands, 423
Age structure, 512
age structure, 524
algal bloom, 560, 563
allele, 194
alleles, 178
allergy, 469, 472
Allopatric speciation, 262
allopatric speciation, 270
allosteric inhibition, 100, 113
alternation of generations, 155, 170
alternative RNA splicing, 219, 220
alveoli, 415
alveolus, 440
amino acid, 51
Amino acids, 46
amniote, 395
amniotes, 389
amoebocyte, 395
Amoebocytes, 362
Amoebozoa, 306, 319
Amphibia, 388, 395
ampulla of Lorenzini, 395
ampullae of Lorenzini, 387
amygdala, 437, 440
amylase, 409, 440
anabolic, 93, 113
anaerobic, 292, 319
anaerobic cellular respiration, 113
analogous structure, 270, 283, 288
analogous structures, 253
anaphase, 140, 149
aneuploid, 165, 170
anion, 51
anions, 31
anneal, 245
annealing, 229
Annelida, 378, 395
anoxic, 292, 319
anter, 344, 351
Anthophyta, 347, 351
Anthropods, 393
anthropoids, 395
antibody, 461, 472
antigen, 460, 472
antigen-presenting cell (APC), 462, 472
Anura, 388, 395
anus, 411, 440
aorta, 417, 440
apex consumer, 563
apex consumers, 531
aphotic zone, 555, 563
apical meristem, 329, 351
Apoda, 388, 395
apoptosis, 453, 472
appendicular skeleton, 428, 440
applied science, 22, 24
Archaebacteria, 306, 319
Arctic tundra, 553
arctic tundra, 563
Arteries, 419
artery, 440
Arthropoda, 371, 395
Ascomycota, 314, 319
Asexual reproduction, 478
asexual reproduction, 495
Asymmetrical, 358
asymmetrical, 395
atom, 9, 24
atomic number, 28, 51
ATP, 102, 113
ATP synthase, 107, 113
atrium, 417, 440
attenuation, 455, 472
auditory ossicles, 427, 440
autoantibody, 470, 472
Autoimmunity, 470
autoimmunity, 472
autonomic nervous system, 437, 440
autosome, 170
autosomes, 165
autotroph, 118, 132, 563
autotrophs, 535
axial skeleton, 426, 440
axon, 433, 440
B

B cell, 472
B cells, 460
Basal angiosperms, 348
basal angiosperms, 351
basal ganglia, 436, 440
base, 51
bases, 38
Basic science, 22
basic science, 24
Basidiomycota, 314
basidiomycota, 319
benthic realm, 555, 563
bicuspid valve, 417, 440
Bilateral symmetry, 359
bilateral symmetry, 395
Bile, 410
bile, 440
binary fission, 145, 149
binomial nomenclature, 276, 288
biodiversity, 568, 590
biodiversity hotspot, 586, 590
bioenergetics, 92, 113
biofilm, 294, 319
biogeochemical cycle, 537, 563
Biology, 5
biology, 24
Biomagnification, 536
biomagnification, 563
biomarker, 243, 245
biome, 531, 563
bioremediation, 301, 319
biosphere, 12, 24
Biotechnology, 225
biotechnology, 245
birth rate, 505, 525
Black Death, 297, 319
blastocyst, 483, 495
body plan, 356, 395
bolus, 409, 440
bones, 391
boreal forest, 552, 563
bottleneck effect, 256, 270
botulism, 299, 319
brachiation, 393, 395
brainstem, 437, 440
branch point, 279, 288
chaeta, 379
channel, 561, 563
chaparral, 550, 563
chelicerae, 373, 395
chemical bond, 51
chemical bonds, 31
chemical diversity, 569, 590
chemiosmosis, 107, 113
chemoautotroph, 563
chemoautotrophs, 535
chiasma, 158, 170
chitin, 41, 51, 370, 395
chlorophyll, 120, 132
chlorophyll a, 124, 132
chlorophyll b, 124, 132
chloroplast, 85, 120, 132
Chloroplasts, 69
choanocyte, 362, 395
Chondrichthyes, 386, 395
Chordata, 382, 395
Chromalveolata, 306, 319
chromosome inversion, 168, 170
chyme, 410, 441
chytridiomycosis, 580, 590
Chytridiomycota, 314, 319
cilia, 64
cilium, 85
citric acid cycle, 105, 113
clad, 288
cladics, 285
cladistics, 285, 288
class, 276, 288
cleavage furrow, 140, 149
climax community, 524, 525
citellum, 380, 395
citrus, 487, 495
cloning, 228, 245
closed circulatory system, 417, 441
closest relatives, 395
club moss, 351
club mosses, 335
Cnidaria, 363, 395
cnidocyte, 395
cnidocytes, 363
codominance, 186, 194
codon, 214, 220
coelem, 360, 395
cohesion, 36, 51
colon, 411, 441
commensalism, 302, 319
community, 12, 24
competitive exclusion principle, 518, 525
competitive inhibition, 99, 113
complement system, 459, 472
complete digestive system, 370, 396
cratic, 395
calvin cycle, 127, 132
calix, 344, 351
capillary, 295, 319
carbohydrate, 51
Carbon, 40
carbon fixation, 127, 132
cardiac cycle, 418, 440
Cardiac muscle tissue, 430
cardiac muscle tissue, 440
carpel, 344, 351
carrying capacity, 505, 525
cartilaginous joint, 440
Cartilaginous joints, 428
catabolic, 93, 113
cation, 51
cations, 31
cell, 10, 24
cell cycle, 137, 149
cell cycle checkpoints, 142, 149
cell plate, 140, 149
cell wall, 69, 85
cell-mediated immune response, 460, 472
Cellulose, 41
cellulose, 51
central nervous system (CNS), 435, 440
central vacuole, 70, 85
centriole, 149
centrioles, 138
Cephalochordata, 383, 395
cephalo
torax, 373, 395
cerebellum, 437, 441
cerebral cortex, 435, 441
cerebrospinal fluid (CSF), 435, 441
chaeta, 395
cartilage, 415, 440
bronchiole, 440
bronchioles, 415
budding, 363, 395, 495
Budding, 479
buffer, 51
Buffers, 38
bulbourethral gland, 486, 495
Bush meat, 578
bush meat, 590
density-independent regulation, 525
deoxyribonucleic acid (DNA), 49, 51
deoxyribose, 200, 220
depolarization, 432, 441
descriptive, 19
descriptive science, 24
desmosome, 85
desmosomes, 72
detrital food web, 534, 563
Deuteromycota, 319
deuterostome, 396
Deuterostomes, 360
diaphragm, 415, 441
diastole, 418, 441
dicot, 351
dicots, 348
Diffusion, 77
diffusion, 85
dihybrid, 183, 194
dioecious, 371, 396
diphyodont, 396
diphyodonts, 392
 diploblast, 396
diploblasts, 359
diploid, 136, 149
diploid-dominant, 155, 170
Diplontic, 327
diplontic, 351
disaccharide, 51
Disaccharides, 41
discontinuous variation, 174, 194
dispersal, 263, 270
divergent evolution, 253, 270
DNA ligase, 205, 220
DNA polymerase, 205, 220
domain, 288
domains, 276
Dominant, 177
dominant, 194
dorsal hollow nerve cord, 382, 396
double helix, 201, 220
down feather, 396
down feathers, 391
down-regulation, 422, 441

ecosystem, 12, 24, 530, 563
ecosystem diversity, 569, 590
ecosystem services, 560, 563
ectotherm, 441
ectotherms, 404
effector cell, 472
effector cells, 464
electrocardiogram (ECG), 419, 441
electrochemical gradient, 81, 85
electromagnetic spectrum, 123, 132
electron, 28, 51
electron transfer, 31, 51
electron transport chain, 105, 113
element, 51
elements, 28
Emergent vegetation, 562
emergent vegetation, 563
Endemic species, 571
endemic species, 590
dergonic, 113
dergonic reactions, 96
deciduous gland, 441
deciduous glands, 421
Endocytosis, 82
endocytosis, 85
endomembrane system, 64, 85
endoplasmic reticulum (ER), 65, 85
endosymbiosis, 319
endosymbiotic theory, 303
endotherm, 404, 441
environmental disturbance, 525
environmental disturbances, 523
enzyme, 51, 113
Enzymes, 45
enzymes, 97
epidemic, 319
epidemics, 297
epidermis, 364, 396
epigenetic, 216, 220
epistasis, 192, 194
Equilibrium, 531
equilibrium, 563
esophagus, 408, 441
essential nutrient, 441
essential nutrients, 413
estrogen, 491, 495
Estuaries, 559
estuary, 563
euoecolomate, 396
euoecolomates, 360
eucoeloms, 347, 351
euakaryote, 24
euakaryotes, 10
eukaryotic cell, 60, 85
 euploid, 165, 170
eutherian mammal, 396
Eutherian mammals, 393
eutrophication, 542, 564
evaporation, 35, 51
evolution, 12, 24
Excavata, 306, 319
exergonic, 113
exergonic reactions, 96
exocrine gland, 441
Exocrine glands, 421
Exocytosis, 83
exocytosis, 85
exons, 220
Exotic species, 579
exotic species, 590
exponential growth, 504, 525
external fertilization, 481, 495
extinction, 570, 590
extinction rate, 590
extinction rates, 584
extracellular digestion, 365, 396
extracellular matrix, 70, 85
extremophile, 319
extremophiles, 294

F

F₁, 175, 194
F₂, 175, 194
facilitated transport, 78, 85
fallout, 546, 564
falsifiable, 20, 24
family, 276, 288
fat, 43, 51
Feedback inhibition, 102
feedback inhibition, 113
fermentation, 108, 113
fern, 351
ferns, 336
fertilization, 157, 170
fibrous joint, 441
fibrous joints, 428
filament, 344, 351
Fission, 478
fission, 495
Flagella, 64
flagellum, 85
fluid mosaic model, 74, 85
follicle stimulating hormone (FSH), 490, 495
food chain, 531, 564
food web, 533, 564
foodborne disease, 299, 319
Foundation species, 521
foundation species, 525

Echinodermata, 380, 396
ecosystem, 12, 24, 530, 563
ecosystem diversity, 569, 590
ecosystem services, 560, 563
ectotherm, 441
founder effect, 257, 270
fragmentation, 363, 396, 495
Fragmentation, 479
frog, 396
Frogs, 389
frontal lobe, 436, 441
FtsZ, 147, 149

G
G0 phase, 141, 149
G1 phase, 137, 149
G2 phase, 138, 149
gallbladder, 411, 441
gametangia, 327
gametangium, 351
gamete, 149
gametes, 136
gametophyte, 170, 327, 351
gametophytes, 157
gap junction, 85
Gap junctions, 72
gastrodermis, 364, 396
gastrovascular cavity, 365, 396
gastrulation, 484, 495
Gel electrophoresis, 226
gel electrophoresis, 245
gemmule, 306
gemmules, 363
gene, 149
gene expression, 216, 220
gene flow, 257, 270
gene pool, 254, 270
Gene therapy, 233
gene therapy, 245
genes, 136
Genetic code, 214, 220
Genetic diversity, 569
gene drift, 255, 270
Genetic engineering, 232, 245
Genetic map, 236, 245
Genetic testing, 245
genetically modified organism, 232
genetically modified organism (GMO), 245
genome, 136, 149
Genomics, 236, 245
Genotype, 178, 194
genus, 276, 288
germ cell, 170
germ cells, 155
germ layer, 396
germ layers, 359
Gestation, 493, 495

Gestation period, 493, 495
Gingkophyte, 351
Ginkgophyte, 351
glia, 432, 441
Glomeromycota, 314, 319
Glycogen, 41
glycogen, 51
Glycolysis, 103
glycolysis, 113
glycoprotein, 451, 472
Gnathostome, 386
Gnathostomes, 386
gnathophyte, 351
Gnaphytes, 342
Golgi apparatus, 66, 86
Gonadotropin-releasing hormone (GnRH), 490, 495
Gram-negative, 295, 319
Gram-positive, 295, 319
Granum, 121, 132
Graining food web, 534, 564
Gross primary productivity, 535, 564
Gymnosperm, 351
Gymnosperms, 339
Gynoecium, 344, 351

H
Habitat heterogeneity, 572, 590
Hagfish, 396
Hagfishes, 385
Haplodiplontic, 327, 351
Haploid, 136, 149
Haploid-dominant, 155, 170
Haplontic, 327
Haplotnic, 351
Heat energy, 94, 113
Helicase, 205, 220
Helper T lymphocyte (Th), 472
Hemizygous, 189, 194
Hemocoei, 371, 396
Herbaceous, 349, 351
Hermaphroditism, 480
Hermaphroditism, 495
Heterodont teeth, 392, 396
Heterosporous, 327, 351
Heterotroph, 132
Heterotrophs, 118
Heterozygous, 179, 194
Hippocampus, 436, 441
Homeostasis, 8, 24
Homologous chromosomes, 136, 149
Homologous structure, 270
Homologous structures, 253
Homosporous, 327, 351
Homozgyous, 178, 194
Hormone, 51, 441
Hormone receptors, 421
Hormones, 45, 421
Hornwort, 351
Hornworts, 333
Horse tail, 351
Horsetails, 335
Host, 519, 525
Human beta chorionic gonadotropin (β-HCG), 493, 495
Humoral immune response, 460, 472
Hybridization, 194
Hybridizations, 175
Hydrogen bond, 33, 51
Hydrophilic, 34, 52
Hydrophobic, 34, 52
Hydrosphere, 537, 564
Hydrothermal vent, 293, 319
Hyoid bone, 427, 441
Hypersensitivity, 469, 472
Hypertonic, 79, 86
Hypha, 312, 329
Hypothalamus, 437, 441
Hypothesis, 18, 24
Hypothesis-based science, 19, 24
Hypotonic, 79, 86

I
Immune tolerance, 468, 473
Immunodeficiency, 469
Immunodeficiency, 473
Incomplete dominance, 186, 194
Inductive reasoning, 18
Inductive reasoning, 24
Inferior vena cava, 417, 441
Inflammation, 457, 473
Inheritance of acquired characteristics, 250, 270
Inhibin, 491, 495
Innate immune, 456
Innate immunity, 473
Inner cell mass, 483, 495
Interferon, 457, 473
Interkinesis, 161, 170
Internal fertilization, 481, 495
Interphase, 137, 149
Interstitial cell of Leydig, 495
Interstitial cells of Leydig, 485
Interstitial fluid, 406, 441
Intertidal zone, 555, 564
intracellular, 421
intracellular digestion, 362, 396
intracellular hormone receptor, 441
intraspecific competition, 506, 525
intron, 220
introns, 212
ion, 31, 52
ionic bond, 32, 52
Island biogeography, 521
island biogeography, 525
isotonic, 80, 86
isotope, 52
Isotopes, 29

J
J-shaped growth curve, 505, 525
joint, 428, 442

K
K-selected species, 510, 525
karyogram, 164, 170
karyotype, 164, 170
keystone species, 522, 525
kidney, 442
kidneys, 406
kinetic energy, 95, 113
kinetochore, 140, 149
kingdom, 276, 288

L
labia majora, 487, 495
labia minora, 487, 495
lagging strand, 205, 220
lamprey, 396
Lampeys, 386
lancelet, 396
Lancelets, 384
large intestine, 411, 442
larynx, 415, 442
lateral, 387
lateral line, 397
law of dominance, 179, 194
law of independent assortment, 183, 194
law of segregation, 181, 194
leading strand, 205, 220
lichen, 319
Lichens, 317
life cycle, 170
life cycles, 154
life science, 24
life sciences, 18
life table, 525
life tables, 500
light-dependent reaction, 132
light-dependent reactions, 121
limbic system, 437, 442
line, 387
linkage, 191, 194
Lipids, 42
lipids, 52
litmus, 37
litmus paper, 52
liver, 411, 442
liverwort, 352
Liverworts, 333
locus, 136, 149
logistic growth, 505, 525
Lophotrochozoa, 374, 397
luteinizing hormone (LH), 490, 495
Lymph, 466
lymph, 473
lymphocyte, 458, 473
lysosome, 86
lysosomes, 66

M
macroevolution, 254, 270
macromolecule, 24, 52
macromolecules, 9, 39
macrophage, 457, 473
madreporite, 381, 397
major histocompatibility class (MHC) I, 473
major histocompatibility class (MHC) I molecules, 458
major histocompatibility class (MHC) II molecule, 473
mammal, 397
Mammals, 392
mammary gland, 397
Mammary glands, 392
mante, 375, 397
mark and recapture, 501, 525
marsupial, 397
Marsupials, 392
mass number, 28, 52
mast cell, 473
Mast cells, 457
Matter, 28
matter, 52
maximum parsimony, 287, 288
medusa, 364, 397
megasporeocyte, 339, 352
meiosis, 154, 170
meiosis I, 157, 170
Meiosis II, 157
meiosis II, 170
membrane potential, 442
memory cell, 464, 473
meninges, 435, 442
menstrual cycle, 491, 495
mesoglea, 364, 397
mesohyl, 362, 397
mesophyll, 120, 132
metabolism, 92, 114
Metagenomics, 240
metagenomics, 245
metamerism, 379, 397
metaphase, 140, 149
metaphase plate, 140, 149
MHC class II molecule, 461
microbial mat, 293, 320
microevolution, 254, 270
microscope, 56, 86
microsporocyte, 352
microsporocytes, 339
migration, 255, 270
mimicry, 516, 525
mineral, 442
Minerals, 413
mismatch repair, 208, 220
Mitochondria, 68
mitochondria, 86
mitosis, 138, 149
mitotic, 137, 138
mitotic phase, 149
mitotic spindle, 149
model organism, 245
model organisms, 238
model system, 174, 194
modern synthesis, 254, 270
mold, 320
molds, 313
molecular systematics, 284, 288
molecule, 9, 24
Mollusca, 374, 397
monocot, 352
monocots, 347
monocyte, 457, 473
monoecious, 363, 397
monohybrid, 180, 194
monophyletic group, 285, 288
monosaccharide, 52
Monosaccharides, 40
monosomy, 165, 170
monotreme, 397
monotremes, 392
mortality rate, 502, 525
moss, 352
mosses, 334
mRNA, 210, 220
MRSA, 320
mutation, 209, 220
mutualism, 519, 525
mycelium, 312, 320
Mycorrhiza, 316
mycorrhiza, 320
mycoses, 315
mycosis, 320
myofibril, 442
myofibrils, 430
myofilament, 442
myofilaments, 431
Myxini, 385, 397

N
nacre, 376, 397
nasal cavity, 415, 442
natural killer (NK) cell, 458, 473
natural science, 24
natural sciences, 18
Natural selection, 251
natural selection, 270
nematocyst, 397
nematocysts, 363
Nematoda, 370, 397
nephron, 442
nephrons, 407
neritic zone, 556, 564
Net primary productivity, 535
net primary productivity, 564
neuron, 442
neurons, 432
neuron, 52
Neutrons, 28
neutrophil, 458, 473
nitrogenous base, 200, 220
non-renewable resource, 541, 564
noncompetitive inhibition, 100, 114
nondisjunction, 164, 170
nonpolar covalent bond, 52
Nonpolar covalent bonds, 32
nontemplate strand, 211, 220
nonvascular plant, 352
nonvascular plants, 331
notochord, 382, 397
nuclear envelope, 65, 86
nucleic acid, 52
nucleic acids, 49
nucleolus, 65, 86
nucleotide, 52
nucleotide excision repair, 208, 220
nucleotides, 49
nucleus, 28, 52, 65, 86
O
occipital lobe, 436, 442
oceanic zone, 556, 564
octet rule, 31, 52
oil, 52
oils, 44
Okazaki fragments, 205, 220
oncogene, 150
oncogenes, 143
one-child policy, 513, 525
oogenesis, 488, 495
open circulatory system, 442
Open circulatory systems, 417
Opisthokonta, 306, 320
oral cavity, 409, 442
order, 276, 288
organ, 24
organ system, 10, 24
organelle, 24, 86
organelles, 10, 60
organism, 24
Organisms, 10
organogenesis, 484, 496
Organs, 10
origin, 145, 150
osculum, 362, 397
osmolarity, 79, 86
Osmoregulation, 406
osmoregulation, 442
Osmosis, 79
osmosis, 86
osmotic balance, 406, 442
Osteichthyes, 387, 397
ostracoderm, 397
ostracoderms, 385
ovarian cycle, 491, 496
ovary, 344, 352
oviduct, 496
oviducts, 487
oviparity, 482, 496
ovoviparity, 482, 496
ovulation, 492, 496
oxidative phosphorylation, 105, 114
P
P, 175, 194
pancreas, 411, 423, 442
pandemic, 320
pandemics, 297
paper, 37
parasite, 320, 519, 525
parasites, 305
parasympathetic nervous system, 439, 442
parathyroid gland, 442
parathyroid glands, 423
parietal lobe, 436, 442
Parthenogenesis, 480
parthenogenesis, 496
passive immune, 461
passive immunity, 473
Passive transport, 77
passive transport, 86
pathogen, 296, 320
pectoral girdle, 428, 442
peer-reviewed article, 24
Peer-reviewed articles, 23
pelagic realm, 555, 564
pellicle, 320
pellicles, 305
pelvic girdle, 428, 442
penis, 485, 496
pepsin, 410, 442
peptidoglycan, 295, 320
periodic table of elements, 29, 52
peripheral nervous system (PNS), 437, 442
peristalsis, 408, 442
permafrost, 553, 564
peroxisome, 86
Peroxisomes, 68
petal, 352
Petals, 344
Petromyzontidae, 386, 397
pH scale, 37, 52
Phagocytosis, 83
phagocytosis, 86
Pharmacogenomics, 240
pharmacogenomics, 245
pharyngeal slit, 397
Pharyngeal slits, 382
pharynx, 415, 442
phase, 137
phenotype, 178, 194
phloem, 334, 352
phosphate group, 200, 220
phospholipid, 52
Phospholipids, 45
photic zone, 555, 564
photoautotroph, 132, 564
photoautotrophs, 118, 535
photon, 124, 132
photosystem, 124, 132
phototroph, 320

This OpenStax book is available for free at http://cnx.org/content/col11487/1.9
phototrophs, 292
phylogenetic tree, 14, 24, 279, 288
phylogeny, 276, 288
phylum, 276, 288
physical map, 245
Physical maps, 236
physical science, 24
physical sciences, 18
pigment, 120, 132
pinocytosis, 83, 86
pioneer species, 524, 526
pistil, 344, 352
pituitary gland, 422, 443
placenta, 493, 496
planktivore, 564
planktivores, 558
plasma membrane, 63, 86
plasmid, 228, 245
plasmodesma, 86
Plasmodesmata, 71
plastid, 303, 320
pneumatic, 391
pneumatic bone, 397
polar covalent bond, 32, 52
Polymerase chain reaction (PCR), 227
polymerase chain reaction (PCR), 245
polyp, 364, 397
polypeptide, 46, 52
polypliod, 167, 170
polysaccharide, 41, 52
population, 12, 24
population density, 500, 526
population genetics, 254, 270
population size, 500, 526
Porifera, 361, 397
post-anal tail, 383, 397
post-transcriptional, 217, 220
post-translational, 217, 220
potential energy, 95, 114
primary bronchi, 415
primary bronchus, 443
primary consumer, 564
primary consumers, 531
primary immune response, 464, 473
primary succession, 523, 526
Primates, 393, 397
primer, 205, 221
producer, 564
producers, 531
progesterone, 491, 496
prokaryote, 24
Prokaryotes, 10
prokaryotic cell, 59, 86
prometaphase, 139, 150
promoter, 210, 221
prophase, 139, 150
Prosimians, 393
prosimians, 398
prostate gland, 486, 496
protein, 52
protein signature, 243, 245
Proteins, 45
proteomics, 243, 245
proto-oncogene, 150
proto-oncogenes, 143
proton, 28, 52
protoplasm, 398
Protostomes, 360
pseudocoelomate, 398
pseudocoelomates, 360
pseudopeptidoglycan, 296, 320
pulmonary circulation, 417, 443
Punnett square, 180, 194
quadrat, 501, 526
quiescent, 150
r-selected species, 510, 526
radial symmetry, 358, 398
radioactive isotope, 52
radioactive isotopes, 29
radula, 374, 398
receptor-mediated endocytosis, 83, 86
Recessive, 177
recessive, 195
reciprocal cross, 177, 195
recombinant, 158, 170
recombinant DNA, 230, 245
recombinant protein, 245
recombinant proteins, 230
recombination, 191, 195
rectum, 411, 443
reduction division, 162, 170
Relative species abundance, 521
relative species abundance, 526
renal artery, 407, 443
renal vein, 407, 443
replication fork, 221
replication forks, 205
Reproductive cloning, 230
reproductive cloning, 245
resilience, 531
resilience (ecological), 564
resistance, 531
resistance (ecological), 564
restriction enzyme, 245
restriction enzymes, 229
reverse genetics, 232, 245
Rhizaria, 306, 320
ribonucleic acid (RNA), 49, 52
ribosome, 86
Ribosomes, 68
RNA polymerase, 211, 221
rooted, 279, 288
rough endoplasmic reticulum (RER), 65, 86
rRNA, 213, 221
S
S phase, 138, 150
S-shaped curve, 505
S-shaped growth curve, 526
salamander, 398
salamanders, 388
salivary gland, 443
salivary glands, 409
saprobe, 320
saprobes, 310
sarcolemma, 430, 443
sarcomere, 431, 443
Sarcopterygii, 387, 398
saturated fatty acid, 52
Saturated fatty acids, 44
savanna, 564
Savannas, 549
Science, 17
science, 19, 25
scientific law, 25
scientific laws, 18
scientific method, 18, 25
scientific theory, 18, 25
scrotum, 485, 496
sebaceous gland, 398
Sebaceous glands, 392
secondary consumer, 564
Secondary consumers, 531
secondary immune response, 465, 473
secondary plant compound, 590
secondary plant compounds, 572
secondary succession, 523, 526
selectively permeable, 77, 86
Semen, 485
semen, 496
semiconservative replication, 205, 221
seminal vesicle, 496
seminal vesicles, 486
seminiferous tubule, 496
seminiferous tubules, 485
sensory-somatic nervous system, 437, 443
sepal, 352
sepals, 344
septum, 145, 150, 313, 320
Sertoli cell, 496
Sertoli cells, 485
set point, 404, 443
sex determination, 481, 496
sexual reproduction, 478, 496
shared ancestral character, 286, 288
shared derived character, 286, 288
sister taxa, 279, 288
Skeletal muscle tissue, 430
skeletal muscle tissue, 443
skull, 427, 443
small intestine, 410, 443
smooth endoplasmic reticulum (SER), 66, 86
Smooth muscle tissue, 430
smooth muscle tissue, 443
solute, 79, 86
solvent, 36, 53
somatic cell, 157, 170
source water, 561, 564
speciation, 262, 270
species, 276, 288
species distribution pattern, 501, 526
Species richness, 520
species richness, 526
species-area relationship, 584, 590
spermatogenesis, 488, 496
Sphenodontia, 391, 398
spicule, 398
spicules, 362
spinal cord, 443
spindle, 138
spiration, 398
spiracles, 371
splicing, 212, 221
spongocoel, 362, 398
sporangia, 327
sporangium, 352
sporophyll, 352
sporophylls, 335
sporophyte, 157, 170, 327, 352
Squama, 391, 398
stamen, 352
stamens, 344
Starch, 41
starch, 53
start codon, 214, 221
stereoscopic vision, 393, 398
steroid, 53
steroids, 45
stigma, 344, 352
stoma, 132
stomach, 410, 443
stomata, 120
stop codon, 221
stop codons, 214
Strobili, 335
strobili, 352
stroma, 121, 132
stromatolite, 293, 320
style, 344, 352
subduction, 541, 564
substrate, 114
substrates, 98
subtropical desert, 564
Subtropical deserts, 549
sudoriferous gland, 398
Sudoriferous glands, 392
superior vena cava, 417, 443
surface tension, 36, 53
surviviorship curve, 503, 526
swim bladder, 387, 398
sympathetic nervous system, 438, 443
Sympatric speciation, 262
sympatric speciation, 270
synapse, 443
synapses, 432
synapsis, 158, 170
somatic cleft, 435, 443
syngamy, 327, 352
Synovial joints, 428
synovial joints, 443
systematics, 276, 288
systemic circulation, 417, 443
systole, 418, 443

T

T cell, 473
T cells, 460
tadpole, 389, 398
taxon, 276, 288
Taxonomy, 276
taxonomy, 288
telomerase, 206, 221
telomere, 221
telomer, 206
telophase, 140, 150
temperate forest, 564
Temperate forests, 552
temperate grassland, 565
Temperate grasslands, 551
Temperature, 35
temperature, 53
template strand, 211, 221
temporal lobe, 436, 443
tertiary consumer, 565
Tertiary consumers, 531
test cross, 181, 195
testes, 485, 496
Testosterone, 490
testosterone, 496
Testudines, 391, 398
tetrad, 171
tetrads, 158
Tetrapod, 383
tetrapod, 398
thalamus, 437, 443
thallus, 312, 320
Thermodynamics, 93
thermodynamics, 114
thoracic cage, 428, 444
threshold of excitation, 432, 444
thylakoid, 132
thylakoids, 120
thymus, 424, 444
thyroid gland, 423, 444
tight junction, 72, 87
tissue, 25
tissues, 10
Tonicity, 79
tonicity, 87
trachea, 398, 415, 444
tracheae, 371
tragedy of the commons, 578, 590
trait, 176, 195
trans-fat, 44, 53
transcription bubble, 210, 221
transduction, 296, 320
transformation, 296, 320
transgenic, 232, 245
Transgenic, 235
translocation, 171
translocations, 164
tricuspid valve, 417, 444
triglyceride, 53
triglycerides, 43
triploblast, 398
triploblasts, 359
trisomy, 165, 171
tRNA, 221
tRNAs, 213
trophic level, 531, 565
trophoblast, 483, 496
tropical rainforest, 565
Tropical rainforests, 548
Tumor suppressor gene, 150
Tumor suppressor genes, 144
tunicate, 398
tunicates, 383

U
unified cell theory, 59, 87
unsaturated fatty acid, 44, 53
up-regulation, 422, 444
ureter, 407, 444
urethra, 407, 444
urinary bladder, 407, 444
Urochordata, 383, 398
Urodela, 388, 398
uterus, 487, 496

V
vaccine, 455, 473
vacuole, 87
vacuoles, 67
vagina, 487, 496
van der Waals interaction, 53
van der Waals interactions, 33
variable, 20, 25
variation, 252, 270
vascular plant, 352
Vascular plants, 331
vein, 444
Veins, 420
ventricle, 417, 444
vertebral column, 382, 398, 428, 444
vesicle, 87
Vesicles, 67
vestigial structure, 270
vestigial structures, 259
vicariance, 263, 270
viral envelope, 451, 473
virion, 451, 473
vitamin, 444
Vitamins, 413
viviparity, 482, 496

W
water vascular system, 380, 398
wavelength, 123, 132
wetland, 565
Wetlands, 562
whisk fern, 352
whisk ferns, 336
white blood cell, 457, 473
white-nose syndrome, 580, 590

Whole genome sequencing, 238
whole genome sequencing, 245
wild type, 187, 195

X
X inactivation, 166, 171
X-linked, 188, 195
Xylem, 334
xylem, 352

Y
yeast, 320
yeasts, 312

Z
zero population growth, 505, 526
zona pellucida, 483, 496
Zygomycota, 314, 320