Concepts of Biology
Chapter 7 | The Cellular Basis of Inheritance

7 | THE CELLULAR BASIS OF INHERITANCE

Figure 7.1 Each of us, like these other large multicellular organisms, begins life as a fertilized egg. After trillions of cell divisions, each of us develops into a complex, multicellular organism. (credit a: modification of work by Frank Wouters; credit b: modification of work by Ken Cole, USGS; credit c: modification of work by Martin Pettitt)

Chapter Outline

7.1: Sexual Reproduction
7.2: Meiosis
7.3: Errors in Meiosis

Introduction

The ability to reproduce in kind is a basic characteristic of all living things. In kind means that the offspring of any organism closely resembles its parent or parents. Hippopotamuses give birth to hippopotamus calves; Monterey pine trees produce seeds from which Monterey pine seedlings emerge; and adult flamingos lay eggs that hatch into flamingo chicks. In kind does not generally mean exactly the same. While many single-celled organisms and a few multicellular organisms can produce genetically identical clones of themselves through mitotic cell division, many single-celled organisms and most multicellular organisms reproduce regularly using another method.

Sexual reproduction is the production by parents of haploid cells and the fusion of a haploid cell from each parent to form a single, unique diploid cell. In multicellular organisms, the new diploid cell will then undergo mitotic cell divisions to develop into an adult organism. A type of cell division called meiosis leads to the haploid cells that are part of the sexual reproductive cycle. Sexual reproduction, specifically meiosis and fertilization, introduces variation into offspring that may account for the evolutionary success of sexual reproduction. The vast majority of eukaryotic organisms can or must employ some form of meiosis and fertilization to reproduce.

7.1 | Sexual Reproduction

By the end of this section, you will be able to:
- Explain that variation among offspring is a potential evolutionary advantage resulting from sexual reproduction
- Describe the three different life-cycle strategies among sexual multicellular organisms and their commonalities

Sexual reproduction was an early evolutionary innovation after the appearance of eukaryotic cells. The fact that most eukaryotes reproduce sexually is evidence of its evolutionary success. In many animals, it is the only mode of reproduction.
And yet, scientists recognize some real disadvantages to sexual reproduction. On the surface, offspring that are genetically identical to the parent may appear to be more advantageous. If the parent organism is successfully occupying a habitat, offspring with the same traits would be similarly successful. There is also the obvious benefit to an organism that can produce offspring by asexual budding, fragmentation, or asexual eggs. These methods of reproduction do not require another organism of the opposite sex. There is no need to expend energy finding or attracting a mate. That energy can be spent on producing more offspring. Indeed, some organisms that lead a solitary lifestyle have retained the ability to reproduce asexually. In addition, asexual populations only have female individuals, so every individual is capable of reproduction. In contrast, the males in sexual populations (half the population) are not producing offspring themselves. Because of this, an asexual population can grow twice as fast as a sexual population in theory. This means that in competition, the asexual population would have the advantage. All of these advantages to asexual reproduction, which are also disadvantages to sexual reproduction, should mean that the number of species with asexual reproduction should be more common.

However, multicellular organisms that exclusively depend on asexual reproduction are exceedingly rare. Why is sexual reproduction so common? This is one of the important questions in biology and has been the focus of much research from the latter half of the twentieth century until now. A likely explanation is that the variation that sexual reproduction creates among offspring is very important to the survival and reproduction of those offspring. The only source of variation in asexual organisms is mutation. This is the ultimate source of variation in sexual organisms. In addition, those different mutations are continually reshuffled from one generation to the next when different parents combine their unique genomes, and the genes are mixed into different combinations by the process of **meiosis**. Meiosis is the division of the contents of the nucleus that divides the chromosomes among gametes. Variation is introduced during meiosis, as well as when the gametes combine in fertilization.

The Red Queen Hypothesis

There is no question that sexual reproduction provides evolutionary advantages to organisms that employ this mechanism to produce offspring. The problematic question is why, even in the face of fairly stable conditions, sexual reproduction persists when it is more difficult and produces fewer offspring for individual organisms? Variation is the outcome of sexual reproduction, but why are ongoing variations necessary? Enter the Red Queen hypothesis, first proposed by Leigh Van Valen in 1973.[1] The concept was named in reference to the Red Queen's race in Lewis Carroll's book, *Through the Looking-Glass*, in which the Red Queen says one must run at full speed just to stay where one is.

All species coevolve with other organisms. For example, predators coevolve with their prey, and parasites coevolve with their hosts. A remarkable example of coevolution between predators and their prey is the unique coadaptation of night flying bats and their moth prey. Bats find their prey by emitting high-pitched clicks, but moths have evolved simple ears to hear these clicks so they can avoid the bats. The moths have also adapted behaviors, such as flying away from the bat when they first hear it, or dropping suddenly to the ground when the bat is upon them. Bats have evolved “quiet” clicks in an attempt to evade the moth’s hearing. Some moths have evolved the ability to respond to the bats’ clicks with their own clicks as a strategy to confuse the bats echolocation abilities.

Each tiny advantage gained by favorable variation gives a species an edge over close competitors, predators, parasites, or even prey. The only method that will allow a coevolving species to keep its own share of the resources is also to continually improve its ability to survive and produce offspring. As one species gains an advantage, other species must also develop an advantage or they will be outcompeted. No single species progresses too far ahead because genetic variation among progeny of sexual reproduction provides all species with a mechanism to produce adapted individuals. Species whose individuals cannot keep up become extinct. The Red Queen's catchphrase was, “It takes all the running you can do to stay in the same place.” This is an apt description of coevolution between competing species.

Life Cycles of Sexually Reproducing Organisms

Fertilization and meiosis alternate in sexual **life cycles**. What happens between these two events depends on the organism. The process of meiosis reduces the resulting gamete’s chromosome number by half. Fertilization, the joining of two haploid
gametes, restores the diploid condition. There are three main categories of life cycles in multicellular organisms: **diploid-dominant**, in which the multicellular diploid stage is the most obvious life stage (and there is no multicellular haploid stage), as with most animals including humans; **haploid-dominant**, in which the multicellular haploid stage is the most obvious life stage (and there is no multicellular diploid stage), as with all fungi and some algae; and **alternation of generations**, in which the two stages, haploid and diploid, are apparent to one degree or another depending on the group, as with plants and some algae.

Nearly all animals employ a diploid-dominant life-cycle strategy in which the only haploid cells produced by the organism are the gametes. The gametes are produced from diploid **germ cells**, a special cell line that only produces gametes. Once the haploid gametes are formed, they lose the ability to divide again. There is no multicellular haploid life stage. Fertilization occurs with the fusion of two gametes, usually from different individuals, restoring the diploid state (Figure 7.2a).
Figure 7.2 (a) In animals, sexually reproducing adults form haploid gametes from diploid germ cells. (b) Fungi, such as black bread mold (*Rhizopus nigricans*), have haploid-dominant life cycles. (c) Plants have a life cycle that alternates between a multicellular haploid organism and a multicellular diploid organism. (credit c "fern": modification of work by Cory Zanker; credit c "gametophyte": modification of work by "Vlmastra"/Wikimedia Commons)
If a mutation occurs so that a fungus is no longer able to produce a minus mating type, will it still be able to reproduce?

Most fungi and algae employ a life-cycle strategy in which the multicellular “body” of the organism is haploid. During sexual reproduction, specialized haploid cells from two individuals join to form a diploid zygote. The zygote immediately undergoes meiosis to form four haploid cells called spores (Figure 7.2b).

The third life-cycle type, employed by some algae and all plants, is called alternation of generations. These species have both haploid and diploid multicellular organisms as part of their life cycle. The haploid multicellular plants are called gametophytes because they produce gametes. Meiosis is not involved in the production of gametes in this case, as the organism that produces gametes is already haploid. Fertilization between the gametes forms a diploid zygote. The zygote will undergo many rounds of mitosis and give rise to a diploid multicellular plant called a sporophyte. Specialized cells of the sporophyte will undergo meiosis and produce haploid spores. The spores will develop into the gametophytes (Figure 7.2c).

7.2 | Meiosis

By the end of this section, you will be able to:

- Describe the behavior of chromosomes during meiosis
- Describe cellular events during meiosis
- Explain the differences between meiosis and mitosis
- Explain the mechanisms within meiosis that generate genetic variation among the products of meiosis

Sexual reproduction requires fertilization, a union of two cells from two individual organisms. If those two cells each contain one set of chromosomes, then the resulting cell contains two sets of chromosomes. The number of sets of chromosomes in a cell is called its ploidy level. Haploid cells contain one set of chromosomes. Cells containing two sets of chromosomes are called diploid. If the reproductive cycle is to continue, the diploid cell must somehow reduce its number of chromosome sets before fertilization can occur again, or there will be a continual doubling in the number of chromosome sets in every generation. So, in addition to fertilization, sexual reproduction includes a nuclear division, known as meiosis, that reduces the number of chromosome sets.

Most animals and plants are diploid, containing two sets of chromosomes; in each somatic cell (the nonreproductive cells of a multicellular organism), the nucleus contains two copies of each chromosome that are referred to as homologous chromosomes. Somatic cells are sometimes referred to as “body” cells. Homologous chromosomes are matched pairs containing genes for the same traits in identical locations along their length. Diploid organisms inherit one copy of each homologous chromosome from each parent; all together, they are considered a full set of chromosomes. In animals, haploid cells containing a single copy of each homologous chromosome are found only within gametes. Gametes fuse with another haploid gamete to produce a diploid cell.

The nuclear division that forms haploid cells, which is called meiosis, is related to mitosis. As you have learned, mitosis is part of a cell reproduction cycle that results in identical daughter nuclei that are also genetically identical to the original parent nucleus. In mitosis, both the parent and the daughter nuclei contain the same number of chromosome sets—diploid for most plants and animals. Meiosis employs many of the same mechanisms as mitosis. However, the starting nucleus is always diploid and the nuclei that result at the end of a meiotic cell division are haploid. To achieve the reduction in chromosome number, meiosis consists of one round of chromosome duplication and two rounds of nuclear division. Because the events that occur during each of the division stages are analogous to the events of mitosis, the same stage names are assigned. However, because there are two rounds of division, the stages are designated with a “I” or “II.” Thus, meiosis I is the first round of meiotic division and consists of prophase I, prometaphase I, and so on. Meiosis I reduces the number of chromosome sets from two to one. The genetic information is also mixed during this division to create unique recombinant chromosomes. Meiosis II, in which the second round of meiotic division takes place in a way that is similar to mitosis, includes prophase II, prometaphase II, and so on.
Interphase

Meiosis is preceded by an interphase consisting of the G1, S, and G2 phases, which are nearly identical to the phases preceding mitosis. The G1 phase is the first phase of interphase and is focused on cell growth. In the S phase, the DNA of the chromosomes is replicated. Finally, in the G2 phase, the cell undergoes the final preparations for meiosis.

During DNA duplication of the S phase, each chromosome becomes composed of two identical copies (called sister chromatids) that are held together at the centromere until they are pulled apart during meiosis II. In an animal cell, the centrosomes that organize the microtubules of the meiotic spindle also replicate. This prepares the cell for the first meiotic phase.

Meiosis I

Early in prophase I, the chromosomes can be seen clearly microscopically. As the nuclear envelope begins to break down, the proteins associated with homologous chromosomes bring the pair close to each other. The tight pairing of the homologous chromosomes is called synapsis. In synapsis, the genes on the chromatids of the homologous chromosomes are precisely aligned with each other. An exchange of chromosome segments between non-sister homologous chromatids occurs and is called crossing over. This process is revealed visually after the exchange as chiasmata (singular = chiasma) (Figure 7.3).

As prophase I progresses, the close association between homologous chromosomes begins to break down, and the chromosomes continue to condense, although the homologous chromosomes remain attached to each other at chiasmata. The number of chiasmata varies with the species and the length of the chromosome. At the end of prophase I, the pairs are held together only at chiasmata (Figure 7.3) and are called tetrads because the four sister chromatids of each pair of homologous chromosomes are now visible.

The crossover events are the first source of genetic variation produced by meiosis. A single crossover event between homologous non-sister chromatids leads to a reciprocal exchange of equivalent DNA between a maternal chromosome and a paternal chromosome. Now, when that sister chromatid is moved into a gamete, it will carry some DNA from one parent of the individual and some DNA from the other parent. The recombinant sister chromatid has a combination of maternal and paternal genes that did not exist before the crossover.
In this illustration of the effects of crossing over, the blue chromosome came from the individual's father and the red chromosome came from the individual's mother. Crossover occurs between non-sister chromatids of homologous chromosomes. The result is an exchange of genetic material between homologous chromosomes. The chromosomes that have a mixture of maternal and paternal sequence are called recombinant and the chromosomes that are completely paternal or maternal are called non-recombinant.

The key event in prometaphase I is the attachment of the spindle fiber microtubules to the kinetochore proteins at the centromeres. The microtubules assembled from centrosomes at opposite poles of the cell grow toward the middle of the cell. At the end of prometaphase I, each tetrad is attached to microtubules from both poles, with one homologous chromosome attached at one pole and the other homologous chromosome attached to the other pole. The homologous chromosomes are still held together at chiasmata. In addition, the nuclear membrane has broken down entirely.

During metaphase I, the homologous chromosomes are arranged in the center of the cell with the kinetochores facing opposite poles. The orientation of each pair of homologous chromosomes at the center of the cell is random. This randomness, called independent assortment, is the physical basis for the generation of the second form of genetic variation in offspring. Consider that the homologous chromosomes of a sexually reproducing organism are originally inherited as two separate sets, one from each parent. Using humans as an example, one set of 23 chromosomes is present in the egg donated by the mother. The father provides the other set of 23 chromosomes in the sperm that fertilizes the egg. In metaphase I, these pairs line up at the midway point between the two poles of the cell. Because there is an equal chance that a microtubule fiber will encounter a maternally or paternally inherited chromosome, the arrangement of the tetrads at the metaphase plate is random. Any maternally inherited chromosome may face either pole. Any paternally inherited chromosome may also face either pole. The orientation of each tetrad is independent of the orientation of the other 22 tetrads.

In each cell that undergoes meiosis, the arrangement of the tetrads is different. The number of variations depends on the number of chromosomes making up a set. There are two possibilities for orientation (for each tetrad); thus, the possible number of alignments equals 2^n where n is the number of chromosomes per set. Humans have 23 chromosome pairs, which results in over eight million (2^{23}) possibilities. This number does not include the variability previously created in the sister chromatids by crossover. Given these two mechanisms, it is highly unlikely that any two haploid cells resulting from meiosis will have the same genetic composition (Figure 7.4).
To summarize the genetic consequences of meiosis I: the maternal and paternal genes are recombined by crossover events occurring on each homologous pair during prophase I; in addition, the random assortment of tetrads at metaphase produces a unique combination of maternal and paternal chromosomes that will make their way into the gametes.

Figure 7.4 To demonstrate random, independent assortment at metaphase I, consider a cell with $n = 2$. In this case, there are two possible arrangements at the equatorial plane in metaphase I, as shown in the upper cell of each panel. These two possible orientations lead to the production of genetically different gametes. With more chromosomes, the number of possible arrangements increases dramatically.

In anaphase I, the spindle fibers pull the linked chromosomes apart. The sister chromatids remain tightly bound together at the centromere. It is the chiasma connections that are broken in anaphase I as the fibers attached to the fused kinetochores pull the homologous chromosomes apart (**Figure 7.5**).

In telophase I, the separated chromosomes arrive at opposite poles. The remainder of the typical telophase events may or may not occur depending on the species. In some organisms, the chromosomes decondense and nuclear envelopes form around the chromatids in telophase I.

Cytokinesis, the physical separation of the cytoplasmic components into two daughter cells, occurs without reformation of the nuclei in other organisms. In nearly all species, cytokinesis separates the cell contents by either a cleavage furrow (in animals and some fungi), or a cell plate that will ultimately lead to formation of cell walls that separate the two daughter cells (in plants). At each pole, there is just one member of each pair of the homologous chromosomes, so only one full set of the chromosomes is present. This is why the cells are considered haploid—there is only one chromosome set, even though there are duplicate copies of the set because each homolog still consists of two sister chromatids that are still attached to each other. However, although the sister chromatids were once duplicates of the same chromosome, they are no longer identical at this stage because of crossovers.
Review the process of meiosis, observing how chromosomes align and migrate, at this site (http://openstaxcollege.org/l/animal_meiosis2).

Meiosis II

In meiosis II, the connected sister chromatids remaining in the haploid cells from meiosis I will be split to form four haploid cells. In some species, cells enter a brief interphase, or interkinesis, that lacks an S phase, before entering meiosis II. Chromosomes are not duplicated during interkinesis. The two cells produced in meiosis I go through the events of meiosis II in synchrony. Overall, meiosis II resembles the mitotic division of a haploid cell.

In prophase II, if the chromosomes decondensed in telophase I, they condense again. If nuclear envelopes were formed, they fragment into vesicles. The centrosomes duplicated during interkinesis move away from each other toward opposite poles, and new spindles are formed. In prometaphase II, the nuclear envelopes are completely broken down, and the spindle is fully formed. Each sister chromatid forms an individual kinetochore that attaches to microtubules from opposite poles. In metaphase II, the sister chromatids are maximally condensed and aligned at the center of the cell. In anaphase II, the sister chromatids are pulled apart by the spindle fibers and move toward opposite poles.

In telophase II, the chromosomes arrive at opposite poles and begin to decondense. Nuclear envelopes form around the chromosomes. Cytokinesis separates the two cells into four genetically unique haploid cells. At this point, the nuclei in the newly produced cells are both haploid and have only one copy of the single set of chromosomes. The cells produced are genetically unique because of the random assortment of paternal and maternal homologs and because of the recombination of maternal and paternal segments of chromosomes—with their sets of genes—that occurs during crossover.
Comparing Meiosis and Mitosis

Mitosis and meiosis, which are both forms of division of the nucleus in eukaryotic cells, share some similarities, but also exhibit distinct differences that lead to their very different outcomes. Mitosis is a single nuclear division that results in two nuclei, usually partitioned into two new cells. The nuclei resulting from a mitotic division are genetically identical to the original. They have the same number of sets of chromosomes: one in the case of haploid cells, and two in the case of diploid cells. On the other hand, meiosis is two nuclear divisions that result in four nuclei, usually partitioned into four new cells. The nuclei resulting from meiosis are never genetically identical, and they contain one chromosome set only—this is half the number of the original cell, which was diploid (Figure 7.6).

The differences in the outcomes of meiosis and mitosis occur because of differences in the behavior of the chromosomes during each process. Most of these differences in the processes occur in meiosis I, which is a very different nuclear division than mitosis. In meiosis I, the homologous chromosome pairs become associated with each other, are bound together, experience chiasmata and crossover between sister chromatids, and line up along the metaphase plate in tetrads with spindle fibers from opposite spindle poles attached to each kinetochore of a homolog in a tetrad. All of these events occur only in meiosis I, never in mitosis.

Homologous chromosomes move to opposite poles during meiosis I so the number of sets of chromosomes in each nucleus-to-be is reduced from two to one. For this reason, meiosis I is referred to as a reduction division. There is no such reduction in ploidy level in mitosis.

Meiosis II is much more analogous to a mitotic division. In this case, duplicated chromosomes (only one set of them) line up at the center of the cell with divided kinetochores attached to spindle fibers from opposite poles. During anaphase II, as in mitotic anaphase, the kinetochores divide and one sister chromatid is pulled to one pole and the other sister chromatid is pulled to the other pole. If it were not for the fact that there had been crossovers, the two products of each meiosis II division would be identical as in mitosis; instead, they are different because there has always been at least one crossover per chromosome. Meiosis II is not a reduction division because, although there are fewer copies of the genome in the resulting cells, there is still one set of chromosomes, as there was at the end of meiosis I.

Cells produced by mitosis will function in different parts of the body as a part of growth or replacing dead or damaged cells. They may even be involved in asexual reproduction in some organisms. Cells produced by meiosis in a diploid-dominant organism such as an animal will only participate in sexual reproduction.
Meiosis and mitosis are both preceded by one round of DNA replication; however, meiosis includes two nuclear divisions. The four daughter cells resulting from meiosis are haploid and genetically distinct. The daughter cells resulting from mitosis are diploid and identical to the parent cell.

For an animation comparing mitosis and meiosis, go to this website (http://openstaxcollege.org/l/how_cells_divid2).

7.3 | Errors in Meiosis

By the end of this section, you will be able to:
- Explain how nondisjunction leads to disorders in chromosome number
- Describe how errors in chromosome structure occur through inversions and translocations

Inherited disorders can arise when chromosomes behave abnormally during meiosis. Chromosome disorders can be divided into two categories: abnormalities in chromosome number and chromosome structural rearrangements. Because even small segments of chromosomes can span many genes, chromosomal disorders are characteristically dramatic and often fatal.
Disorders in Chromosome Number

The isolation and microscopic observation of chromosomes forms the basis of cytogenetics and is the primary method by which clinicians detect chromosomal abnormalities in humans. A karyotype is the number and appearance of chromosomes, including their length, banding pattern, and centromere position. To obtain a view of an individual’s karyotype, cytologists photograph the chromosomes and then cut and paste each chromosome into a chart, or karyogram (Figure 7.7).

![Figure 7.7 This karyogram shows the chromosomes of a female human immune cell during mitosis. (credit: Andreas Bolzer, et al)](image)

Geneticists Use Karyograms to Identify Chromosomal Aberrations

The karyotype is a method by which traits characterized by chromosomal abnormalities can be identified from a single cell. To observe an individual’s karyotype, a person’s cells (like white blood cells) are first collected from a blood sample or other tissue. In the laboratory, the isolated cells are stimulated to begin actively dividing. A chemical is then applied to the cells to arrest mitosis during metaphase. The cells are then fixed to a slide.

The geneticist then stains chromosomes with one of several dyes to better visualize the distinct and reproducible banding patterns of each chromosome pair. Following staining, chromosomes are viewed using bright-field microscopy. An experienced cytogeneticist can identify each band. In addition to the banding patterns, chromosomes are further identified on the basis of size and centromere location. To obtain the classic depiction of the karyotype in which homologous pairs of chromosomes are aligned in numerical order from longest to shortest, the geneticist obtains a digital image, identifies each chromosome, and manually arranges the chromosomes into this pattern (Figure 7.7).

At its most basic, the karyogram may reveal genetic abnormalities in which an individual has too many or too few chromosomes per cell. Examples of this are Down syndrome, which is identified by a third copy of chromosome 21, and Turner syndrome, which is characterized by the presence of only one X chromosome in women instead of two. Geneticists can also identify large deletions or insertions of DNA. For instance, Jacobsen syndrome, which involves distinctive facial features as well as heart and bleeding defects, is identified by a deletion on chromosome 11. Finally, the karyotype can pinpoint translocations, which occur when a segment of genetic material breaks from one chromosome and reattaches to another chromosome or to a different part of the same chromosome. Translocations are implicated in certain cancers, including chronic myelogenous leukemia.

By observing a karyogram, geneticists can actually visualize the chromosomal composition of an individual to confirm or predict genetic abnormalities in offspring even before birth.

Nondisjunctions, Duplications, and Deletions

Of all the chromosomal disorders, abnormalities in chromosome number are the most easily identifiable from a karyogram. Disorders of chromosome number include the duplication or loss of entire chromosomes, as well as changes in the number of complete sets of chromosomes. They are caused by nondisjunction, which occurs when pairs of homologous chromosomes or sister chromatids fail to separate during meiosis. The risk of nondisjunction increases with the age of the parents.

Nondisjunction can occur during either meiosis I or II, with different results (Figure 7.8). If homologous chromosomes fail to separate during meiosis I, the result is two gametes that lack that chromosome and two gametes with two copies of the
chromosome. If sister chromatids fail to separate during meiosis II, the result is one gamete that lacks that chromosome, two normal gametes with one copy of the chromosome, and one gamete with two copies of the chromosome.

Figure 7.8 Following meiosis, each gamete has one copy of each chromosome. Nondisjunction occurs when homologous chromosomes (meiosis I) or sister chromatids (meiosis II) fail to separate during meiosis.

An individual with the appropriate number of chromosomes for their species is called euploid; in humans, euploidy corresponds to 22 pairs of autosomes and one pair of sex chromosomes. An individual with an error in chromosome number is described as aneuploid, a term that includes monosomy (loss of one chromosome) or trisomy (gain of an extraneous chromosome). Monosomic human zygotes missing any one copy of an autosome invariably fail to develop to birth because they have only one copy of essential genes. Most autosomal trisomies also fail to develop to birth; however, duplications of some of the smaller chromosomes (13, 15, 18, 21, or 22) can result in offspring that survive for several weeks to many years. Trisomic individuals suffer from a different type of genetic imbalance: an excess in gene dose. Cell functions are calibrated to the amount of gene product produced by two copies (doses) of each gene; adding a third copy (dose) disrupts this balance. The most common trisomy is that of chromosome 21, which leads to Down syndrome. Individuals with this inherited disorder have characteristic physical features and developmental delays in growth and cognition. The incidence of Down syndrome is correlated with maternal age, such that older women are more likely to give birth to children with Down syndrome (Figure 7.9).
Humans display dramatic deleterious effects with autosomal trisomies and monosomies. Therefore, it may seem counterintuitive that human females and males can function normally, despite carrying different numbers of the X chromosome. In part, this occurs because of a process called X inactivation. Early in development, when female mammalian embryos consist of just a few thousand cells, one X chromosome in each cell inactivates by condensing into a structure called a Barr body. The genes on the inactive X chromosome are not expressed. The particular X chromosome (maternally or paternally derived) that is inactivated in each cell is random, but once the inactivation occurs, all cells descended from that cell will have the same inactive X chromosome. By this process, females compensate for their double genetic dose of X chromosome.

In so-called “tortoiseshell” cats, X inactivation is observed as coat-color variegation (Figure 7.10). Females heterozygous for an X-linked coat color gene will express one of two different coat colors over different regions of their body, corresponding to whichever X chromosome is inactivated in the embryonic cell progenitor of that region. When you see a tortoiseshell cat, you will know that it has to be a female.
Figure 7.10 Embryonic inactivation of one of two different X chromosomes encoding different coat colors gives rise to the tortoiseshell phenotype in cats. (credit: Michael Bodega)

In an individual carrying an abnormal number of X chromosomes, cellular mechanisms will inactivate all but one X in each of her cells. As a result, X-chromosomal abnormalities are typically associated with mild mental and physical defects, as well as sterility. If the X chromosome is absent altogether, the individual will not develop.

Several errors in sex chromosome number have been characterized. Individuals with three X chromosomes, called triplo-X, appear female but express developmental delays and reduced fertility. The XXY chromosome complement, corresponding to one type of Klinefelter syndrome, corresponds to male individuals with small testes, enlarged breasts, and reduced body hair. The extra X chromosome undergoes inactivation to compensate for the excess genetic dosage. Turner syndrome, characterized as an X0 chromosome complement (i.e., only a single sex chromosome), corresponds to a female individual with short stature, webbed skin in the neck region, hearing and cardiac impairments, and sterility.

An individual with more than the correct number of chromosome sets (two for diploid species) is called polyploid. For instance, fertilization of an abnormal diploid egg with a normal haploid sperm would yield a triploid zygote. Polyploid animals are extremely rare, with only a few examples among the flatworms, crustaceans, amphibians, fish, and lizards. Triploid animals are sterile because meiosis cannot proceed normally with an odd number of chromosome sets. In contrast, polyploidy is very common in the plant kingdom, and polyploid plants tend to be larger and more robust than euploids of their species.

Chromosome Structural Rearrangements

Cytologists have characterized numerous structural rearrangements in chromosomes, including partial duplications, deletions, inversions, and translocations. Duplications and deletions often produce offspring that survive but exhibit physical and mental abnormalities. Cri-du-chat (from the French for “cry of the cat”) is a syndrome associated with nervous system abnormalities and identifiable physical features that results from a deletion of most of the small arm of chromosome 5 (Figure 7.11). Infants with this genotype emit a characteristic high-pitched cry upon which the disorder’s name is based.
Chromosome inversions and translocations can be identified by observing cells during meiosis because homologous chromosomes with a rearrangement in one of the pair must contort to maintain appropriate gene alignment and pair effectively during prophase I.

A chromosome inversion is the detachment, 180° rotation, and reinsertion of part of a chromosome (Figure 7.12). Unless they disrupt a gene sequence, inversions only change the orientation of genes and are likely to have more mild effects than aneuploid errors.
The Chromosome 18 Inversion

Not all structural rearrangements of chromosomes produce nonviable, impaired, or infertile individuals. In rare instances, such a change can result in the evolution of a new species. In fact, an inversion in chromosome 18 appears to have contributed to the evolution of humans. This inversion is not present in our closest genetic relatives, the chimpanzees.

The chromosome 18 inversion is believed to have occurred in early humans following their divergence from a common ancestor with chimpanzees approximately five million years ago. Researchers have suggested that a long stretch of DNA was duplicated on chromosome 18 of an ancestor to humans, but that during the duplication it was inverted (inserted into the chromosome in reverse orientation).

A comparison of human and chimpanzee genes in the region of this inversion indicates that two genes—ROCK1 and USP14—are farther apart on human chromosome 18 than they are on the corresponding chimpanzee chromosome. This suggests that one of the inversion breakpoints occurred between these two genes. Interestingly, humans and chimpanzees express USP14 at distinct levels in specific cell types, including cortical cells and fibroblasts. Perhaps the chromosome 18 inversion in an ancestral human repositioned specific genes and reset their expression levels in a useful way. Because both ROCK1 and USP14 code for enzymes, a change in their expression could alter cellular function. It is not known how this inversion contributed to hominid evolution, but it appears to be a significant factor in the divergence of humans from other primates. [2]

A translocation occurs when a segment of a chromosome dissociates and reattaches to a different, nonhomologous chromosome. Translocations can be benign or have devastating effects, depending on how the positions of genes are altered with respect to regulatory sequences. Notably, specific translocations have been associated with several cancers and with schizophrenia. Reciprocal translocations result from the exchange of chromosome segments between two nonhomologous chromosomes such that there is no gain or loss of genetic information (Figure 7.12).

Figure 7.12 An (a) inversion occurs when a chromosome segment breaks from the chromosome, reverses its orientation, and then reattaches in the original position. A (b) reciprocal translocation occurs between two nonhomologous chromosomes and does not cause any genetic information to be lost or duplicated. (credit: modification of work by National Human Genome Research Institute (USA))

KEY TERMS

alternation of generations a life-cycle type in which the diploid and haploid stages alternate

aneuploid an individual with an error in chromosome number; includes deletions and duplications of chromosome segments

autosomal any of the non-sex chromosomes

chiasmata (singular = chiasma) the structure that forms at the crossover points after genetic material is exchanged

chromosome inversion the detachment, 180° rotation, and reinsertion of a chromosome arm

crossing over (also, recombination) the exchange of genetic material between homologous chromosomes resulting in chromosomes that incorporate genes from both parents of the organism forming reproductive cells

diploid-dominant a life-cycle type in which the multicellular diploid stage is prevalent

euploid an individual with the appropriate number of chromosomes for their species

fertilization the union of two haploid cells typically from two individual organisms

gametophyte a multicellular haploid life-cycle stage that produces gametes

germ cell a specialized cell that produces gametes, such as eggs or sperm

haploid-dominant a life-cycle type in which the multicellular haploid stage is prevalent

interkinesis a period of rest that may occur between meiosis I and meiosis II; there is no replication of DNA during interkinesis

karyogram the photographic image of a karyotype

karyotype the number and appearance of an individual’s chromosomes, including the size, banding patterns, and centromere position

life cycle the sequence of events in the development of an organism and the production of cells that produce offspring

meiosis a nuclear division process that results in four haploid cells

meiosis I the first round of meiotic cell division; referred to as reduction division because the resulting cells are haploid

meiosis II the second round of meiotic cell division following meiosis I; sister chromatids are separated from each other, and the result is four unique haploid cells

monosomy an otherwise diploid genotype in which one chromosome is missing

nondisjunction the failure of synapsed homologs to completely separate and migrate to separate poles during the first cell division of meiosis

polyploid an individual with an incorrect number of chromosome sets

recombinant describing something composed of genetic material from two sources, such as a chromosome with both maternal and paternal segments of DNA

reduction division a nuclear division that produces daughter nuclei each having one-half as many chromosome sets as the parental nucleus; meiosis I is a reduction division

somatic cell all the cells of a multicellular organism except the gamete-forming cells

sporophyte a multicellular diploid life-cycle stage that produces spores

synapsis the formation of a close association between homologous chromosomes during prophase I
tetrad two duplicated homologous chromosomes (four chromatids) bound together by chiasmata during prophase I

translocation the process by which one segment of a chromosome dissociates and reattaches to a different, nonhomologous chromosome

trisomy an otherwise diploid genotype in which one entire chromosome is duplicated

X inactivation the condensation of X chromosomes into Barr bodies during embryonic development in females to compensate for the double genetic dose

CHAPTER SUMMARY

7.1 Sexual Reproduction

Nearly all eukaryotes undergo sexual reproduction. The variation introduced into the reproductive cells by meiosis appears to be one of the advantages of sexual reproduction that has made it so successful. Meiosis and fertilization alternate in sexual life cycles. The process of meiosis produces genetically unique reproductive cells called gametes, which have half the number of chromosomes as the parent cell. Fertilization, the fusion of haploid gametes from two individuals, restores the diploid condition. Thus, sexually reproducing organisms alternate between haploid and diploid stages. However, the ways in which reproductive cells are produced and the timing between meiosis and fertilization vary greatly. There are three main categories of life cycles: diploid-dominant, demonstrated by most animals; haploid-dominant, demonstrated by all fungi and some algae; and alternation of generations, demonstrated by plants and some algae.

7.2 Meiosis

Sexual reproduction requires that diploid organisms produce haploid cells that can fuse during fertilization to form diploid offspring. The process that results in haploid cells is called meiosis. Meiosis is a series of events that arrange and separate chromosomes into daughter cells. During the interphase of meiosis, each chromosome is duplicated. In meiosis, there are two rounds of nuclear division resulting in four nuclei and usually four haploid daughter cells, each with half the number of chromosomes as the parent cell. During meiosis, variation in the daughter nuclei is introduced because of crossover in prophase I and random alignment at metaphase I. The cells that are produced by meiosis are genetically unique.

Meiosis and mitosis share similarities, but have distinct outcomes. Mitotic divisions are single nuclear divisions that produce daughter nuclei that are genetically identical and have the same number of chromosome sets as the original cell. Meiotic divisions are two nuclear divisions that produce four daughter nuclei that are genetically different and have one chromosome set rather than the two sets the parent cell had. The main differences between the processes occur in the first division of meiosis. The homologous chromosomes separate into different nuclei during meiosis I causing a reduction of ploidy level. The second division of meiosis is much more similar to a mitotic division.

7.3 Errors in Meiosis

The number, size, shape, and banding pattern of chromosomes make them easily identifiable in a karyogram and allow for the assessment of many chromosomal abnormalities. Disorders in chromosome number, or aneuploidies, are typically lethal to the embryo, although a few trisomic genotypes are viable. Because of X inactivation, aberrations in sex chromosomes typically have milder effects on an individual. Aneuploidies also include instances in which segments of a chromosome are duplicated or deleted. Chromosome structures also may be rearranged, for example by inversion or translocation. Both of these aberrations can result in negative effects on development, or death. Because they force chromosomes to assume contorted pairings during meiosis I, inversions and translocations are often associated with reduced fertility because of the likelihood of nondisjunction.

ART CONNECTION QUESTIONS

1. Figure 7.2 If a mutation occurs so that a fungus is no longer able to produce a minus mating type, will it still be able to reproduce?

REVIEW QUESTIONS

2. What is a likely evolutionary advantage of sexual reproduction over asexual reproduction? a. sexual reproduction involves fewer steps
b. less chance of using up the resources in a given environment
c. sexual reproduction results in greater variation in the offspring
d. sexual reproduction is more cost-effective

3. Which type of life cycle has both a haploid and diploid multicellular stage?
 a. an asexual life cycle
 b. diploid-dominant
 c. haploid-dominant
 d. alternation of generations

4. Which event leads to a diploid cell in a life cycle?
 a. meiosis
 b. fertilization
 c. alternation of generations
 d. mutation

5. Meiosis produces ________ daughter cells.
 a. two haploid
 b. two diploid
 c. four haploid
 d. four diploid

6. At which stage of meiosis are sister chromatids separated from each other?
 a. prophase I
 b. prophase II
 c. anaphase I
 d. anaphase II

7. The part of meiosis that is similar to mitosis is ________.

CRITICAL THINKING QUESTIONS

12. Explain the advantage that populations of sexually reproducing organisms have over asexually reproducing organisms?

13. Describe the two events that are common to all sexually reproducing organisms and how they fit into the different life cycles of those organisms.

14. Explain how the random alignment of homologous chromosomes during metaphase I contributes to variation in gametes produced by meiosis.

15. In what ways is meiosis II similar to and different from mitosis of a diploid cell?

16. Individuals with trisomy 21 are more likely to survive to adulthood than individuals with trisomy 18. Based on what you know about aneuploidies from this module, what can you hypothesize about chromosomes 21 and 18?
The free electron travels through the electron transport chain, and the energy of the electron is used to pump hydrogen ions into the thylakoid space, transferring the energy into the electrochemical gradient. The energy of the electrochemical gradient is used to power ATP synthase, and the energy is transferred into a bond in the ATP molecule. In addition, energy from another photon can be used to create a high-energy bond in the molecule NADPH. Photosynthesis takes the energy of sunlight and combines water and carbon dioxide to produce sugar and oxygen as a waste product. The reactions of respiration take sugar and consume oxygen to break it down into carbon dioxide and water, releasing energy. Thus, the reactants of photosynthesis are the products of respiration, and vice versa.

Chapter 6

1 Figure 6.4 D. The kinetochore becomes attached to the mitotic spindle. Sister chromatids line up at the metaphase plate. The kinetochore breaks apart and the sister chromatids separate. The nucleus reforms and the cell divides. 2 C 4 B 6 A 8 C 10 C 12 Human somatic cells have 46 chromosomes, including 22 homologous pairs and one pair of nonhomologous sex chromosomes. This is the 2n, or diploid, condition. Human gametes have 23 chromosomes, one each of 23 unique chromosomes. This is the n, or haploid, condition. 14 If one of the genes that produce regulator proteins becomes mutated, it produces a malformed, possibly non-functional, cell-cycle regulator. This increases the chance that more mutations will be left un repaired in the cell. Each subsequent generation of cells sustains more damage. The cell cycle can speed up as a result of loss of functional checkpoint proteins. The cells can lose the ability to self-destruct. 16 The common components of eukaryotic cell division and binary fission are DNA duplication, segregation of duplicated chromosomes, and the division of the cytoplasmic contents.

Chapter 7

1 Figure 7.2 Yes, it will be able to reproduce asexually. 2 C 4 B 6 D 8 B 10 D 12 The offspring of sexually reproducing organisms are all genetically unique. Because of this, sexually reproducing organisms may have more successful survival of offspring in environments that change than asexually reproducing organisms, whose offspring are all genetically identical. In addition, the rate of adaptation of sexually reproducing organisms is higher, because of their increased variation. This may allow sexually reproducing organisms to adapt more quickly to competitors and parasites, who are evolving new ways to exploit or outcompete them. 14 Random alignment leads to new combinations of traits. The chromosomes that were originally inherited by the gamete-producing individual came equally from the egg and the sperm. In metaphase I, the duplicated copies of these maternal and paternal homologous chromosomes line up across the center of the cell to form a tetrad. The orientation of each tetrad is random. There is an equal chance that the maternally derived chromosomes will be facing either pole. The same is true of the paternally derived chromosomes. The alignment should occur differently in almost every meiosis. As the homologous chromosomes are pulled apart in anaphase I, any combination of maternal and paternal chromosomes will move toward each pole. The gametes formed from these two groups of chromosomes will have a mixture of traits from the individual’s parents. Each gamete is unique. 16 The problems caused by trisomies arise because the genes on the chromosome that is present in three copies produce more product than genes on chromosomes with only two copies. The cell does not have a way to adjust the amount of product, and the lack of balance causes problems in development and the maintenance of the individual. Each chromosome is different, and the differences in survivability could have to do with the numbers of genes on the two chromosomes. Chromosome 21 may be a smaller chromosome, so there are fewer unbalanced gene products. It is also possible that chromosome 21 carries genes whose products are less sensitive to differences in dosage than chromosome 18. The genes may be less involved in critical pathways, or the differences in dosage may make less of a difference to those pathways.

Chapter 8

1 Figure 8.9 You cannot be sure if the plant is homozygous or heterozygous as the data set is too small: by random chance, all three plants might have acquired only the dominant gene even if the recessive one is present. 3 Figure 8.16 Half of the female offspring would be heterozygous (X^WX^W) with red eyes, and half would be homozygous recessive (X^WX^W) with white eyes. Half of the male offspring would be hemizygous dominant (X^WY) with red eyes, and half would be hemizygous recessive (X^WY) with white eyes. 4 B 6 A 8 C 10 D 12 C 14 The garden pea has flowers that close tightly during self-pollination. This helps to prevent accidental or unintentional fertilizations that could have diminished the accuracy of Mendel’s data. The Punnett square will be 2 × 2 and will have T and t along the top and T and t along the left side. Clockwise from the top left, the genotypes listed within the boxes will be TT, Tt, Tt, and tt. The genotypic ratio will be 1TT:2Tt:1tt. 18 Yes this child could have come from these parents. The child would have inherited an i allele from each parent and for this to happen the type A parent had to have genotype IⁱIⁱ and the type b parent had to have genotype I^hI^h.

Chapter 9

1 Figure 9.10 Ligase, as this enzyme joins together Okazaki fragments. 2 A 4 B 6 A 8 C 10 D 12 The DNA is wound around proteins called histones. The histones then stack together in a compact form that creates a fiber that is 30-nm thick. The fiber is further coiled for greater compactness. During metaphase of mitosis, the chromosome is at its most compact to facilitate chromosome movement. During interphase, there are denser areas of chromatin, called heterochromatin, that contain DNA that is not expressed, and less dense euchromatin that contains DNA that is expressed. 14 Telomerase has an inbuilt RNA template
INDEX

A

absorption spectrum, 124, 132
abyssal zone, 556, 563
acellular, 450, 472
acetyl CoA, 104, 113
acid, 51
Acid rain, 547
acid rain, 563
Acids, 38
acelomate, 395
acelomates, 360
Actinopterygii, 387, 395
action potential, 432, 440
activation energy, 97, 113
active immunity, 461, 472
active site, 98, 113
Active transport, 81
active transport, 85
adaptation, 253, 270
Adaptive immunity, 460
adaptive immunity, 472
adaptive radiation, 264, 270
adhesion, 37, 51
adrenal gland, 440
adrenal glands, 423
Age structure, 512
age structure, 525
algal bloom, 560, 563
allele, 194
alleles, 178
allergy, 469, 472
Allopatric speciation, 262
allopatric speciation, 270
allosteric inhibition, 100, 113
alternation of generations, 155, 170
alternative RNA splicing, 219, 220
alveoli, 415
alveolus, 440
amino acid, 51
Amino acids, 46
amniote, 395
amniotes, 389
amoebocyte, 395
Amoebocytes, 362
Amoebozoa, 306, 319
Amphibia, 388, 395
ampulla of Lorenzini, 395
ampullae of Lorenzini, 387
amygdala, 437, 440
amylase, 409, 440
anabolic, 93, 113
anaerobic, 292, 319
anaerobic cellular respiration, 113
analogous structure, 270, 283, 288
analogous structures, 253
anaphase, 140, 149
aneuploid, 165, 170
anion, 51
anions, 31
anneal, 245
annealing, 229
Annelida, 378, 395
anoxic, 292, 319
anther, 344, 351
Anthophyta, 347, 351
Anthropoids, 393
anthropoids, 395
antibody, 461, 472
antigen, 460, 472
antigen-presenting cell (APC), 462, 472
Anura, 388, 395
anus, 411, 440
aorta, 417, 440
apex consumer, 563
apex consumers, 531
aphotic zone, 555, 563
apical meristem, 329, 351
Apoda, 388, 395
apoptosis, 453, 472
appendicular skeleton, 428, 440
applied science, 22, 24
Archaeplastida, 306, 319
Arctic tundra, 553
arctic tundra, 563
Arteries, 419
artery, 440
Arthropoda, 371, 395
Ascomycota, 314, 319
Asexual reproduction, 478
asexual reproduction, 495
Asymmetrical, 358
asymmetrical, 395
atom, 9, 24
atomic number, 28, 51
ATP, 102, 113
ATP synthase, 107, 113
atrium, 417, 440
attenuation, 455, 472
auditory ossicles, 427, 440
avoantibody, 470, 472
Autoimmunity, 470
autoimmunity, 472
autonomic nervous system, 437, 440
autosome, 170
autosomes, 165
autotroph, 118, 132, 563
autotrophs, 535
axial skeleton, 426, 440
axon, 433, 440
B

B cell, 472
B cells, 460
Basal angiosperms, 348
basal angiosperms, 351
basal ganglia, 436, 440
base, 51
bases, 38
Basic science, 22
basic science, 24
Basidiomycota, 314
basidiomycota, 319
benthic realm, 555, 563
bicuspide valve, 417, 440
Bilateral symmetry, 359
bilateral symmetry, 395
Bile, 410
bile, 440
binary fission, 145, 149
binomial nomenclature, 276, 288
biodiversity, 568, 590
biodiversity hotspot, 586, 590
bioenergetics, 92, 113
biofilm, 294, 319
biogeochemical cycle, 537, 563
Biology, 5
biology, 24
Biomagnification, 536
biomagnification, 563
biomarker, 243, 245
biome, 531, 563
bioremediation, 301, 319
biosphere, 12, 24
Biotechnology, 225
biotechnology, 245
birth rate, 505, 525
Black Death, 297, 319
blastocyst, 483, 495
body plan, 356, 395
bolus, 409, 440
bones, 391
boreal forest, 552, 563
bottleneck effect, 256, 270
botulism, 299, 319
brachiation, 393, 395
brainstem, 437, 440
branch point, 279, 288
bronchiole, 415, 440
bronchi, 415
bronchioles, 415
budding, 363, 395, 495
Budding, 479
buffer, 51
Buffers, 38
bulbourethral gland, 486, 495
Bush meat, 578
bush meat, 590

C

caecilian, 395
Caecilians, 389
Calvin cycle, 127, 132
calyx, 344, 351
canopy, 548, 563
capillaries, 419
capillary, 440
capsid, 451, 472
capsule, 295, 319
carbohydrate, 51
Carbohydrates, 40
carbon fixation, 127, 132
cardiac cycle, 418, 440
Cardiac muscle tissue, 430
Cardiac muscle tissue, 440
carpel, 344, 351
carrying capacity, 505, 525
cartilaginous joint, 440
Cartilaginous joints, 428
catabolic, 93, 113
cation, 51
cations, 31
cell, 10, 24
cell cycle, 137, 149
cell cycle checkpoints, 142, 149
cell plate, 140, 149
cell wall, 69, 85
cell-mediated immune response, 460, 472
Cellulose, 41
cellulose, 51
central nervous system (CNS), 435, 440
central vacuole, 70, 85
centriole, 149
centrioles, 138
Cephalochordata, 383, 395
cephalothorax, 373, 395
cerebellum, 437, 441
cerebral cortex, 435, 441
cerebrospinal fluid (CSF), 435, 441
chaeta, 395
chaetae, 379
channel, 561, 563
chaparral, 550, 563
chelicerae, 373, 395
chemical bond, 51
chemical bonds, 31
chemical diversity, 569, 590
chemiosmosis, 107, 113
chemoautotroph, 563
chemoautotrophs, 535
chiasma, 158, 170
chitin, 41, 51, 370, 395
chlorophyll, 120, 132
chlorophyll a, 124, 132
chlorophyll b, 124, 132
chloroplast, 85, 120, 132
Chloroplasts, 69
choanocyte, 362, 395
Chondrichthyans, 386, 395
Chordata, 382, 395
Chromalveolata, 306, 319
chromosome inversion, 168, 170
chyme, 410, 441
chrytriomycosis, 580, 590
Chytridiomycota, 314, 319
cilia, 64
cilium, 85
citr acid cycle, 105, 113
clade, 288
clades, 285
cladistics, 285, 288
class, 276, 288
cleavage furrow, 140, 149
climax community, 524, 525
citellum, 380, 395
citlorn, 487, 495
cloning, 228, 245
closed circulatory system, 417, 441
clothing, 351
clothing, 335
Cnidaria, 363, 395
cnidocyte, 395
cnidocytes, 363
codominance, 186, 194
codon, 214, 220
coelem, 360, 395
cohesion, 36, 51
colon, 411, 441
commensalism, 302, 319
compartments, 12, 24
competitive exclusion principle, 518, 525
competitive inhibition, 99, 113
complement system, 459, 472
complete digestive system, 370, 396
carriers, 46, 158
carriers, 174
carrier, 20, 24
convergent evolution, 253, 270
coral reef, 563
Coral reefs, 557
corolla, 344, 351
corpus callosum, 435, 441
corpus luteum, 487, 495
cotyledon, 351
cotyledons, 347
covalent bond, 32, 51
craniate, 396
craniates, 385
Crocodilia, 390, 396
crossing over, 158, 170
cryptoaula, 558, 563
ctenidina, 375, 396
cutaneous respiration, 388, 396
cyanobacteria, 292, 319
cycad, 351
Cycads, 341
cytokine, 457, 472
Cytokinesis, 140
cytokinesis, 149
cytopathic, 453, 472
cytotoxic, 63, 85
cytoplasm, 63, 85
cytoskeleton, 63, 85
cytosol, 63, 85
cytotoxic T lymphocyte (Tc), 472

D
death rate, 505, 525
Deductive reasoning, 19
deductive reasoning, 24
demography, 500, 525
denaturation, 46, 51
dendrite, 441
Dendrites, 432
dendritic cell, 462, 472
density-dependent, 508
density-dependent regulation, 525
density-independent, 508
density-independent regulation, 525
deoxiribonucleic acid (DNA), 49, 51
deoxyribose, 200, 220
depolarization, 432, 441
descriptive, 19
descriptive science, 24
desmosome, 85
desmosomes, 72
detrital food web, 534, 563
Deuteromycota, 319
deuterostome, 396
Diaphagm, 415, 441
diastole, 418, 441
dicot, 351
dicots, 348
Diffusion, 77
diffusion, 85
dihybrid, 183, 194
dioecious, 371, 396
diphyodont, 396
diphyodonts, 392
diploblast, 396
Diploblasts, 359
diploid, 136, 149
diploid-dominant, 155, 170
Diplontic, 327
diplontic, 351
disaccharide, 51
Disaccharides, 41
discontinuous variation, 174, 194
dispersal, 263, 270
divergent evolution, 253, 270
DNA ligase, 205, 220
DNA polymerase, 205, 220
domain, 288
domains, 276
Dominant, 177
dominant, 194
dorsal hollow nerve cord, 382, 396
double helix, 201, 220
down feather, 396
down feathers, 391
down-regulation, 422, 441

E
Echinodermata, 380, 396
ecosystem, 12, 24, 530, 563
ecosystem diversity, 569, 590
ecosystem services, 560, 563
ectotherm, 441
ectotherms, 404
effector cell, 472
effector cells, 464
electrocardiogram (ECG), 419, 441
electrochemical gradient, 81, 85
electromagnetic spectrum, 123, 132
electron, 28, 51
electron transfer, 31, 51
electron transport chain, 105, 113
element, 51
elements, 28
Emergent vegetation, 562
emergent vegetation, 563
Endemic species, 571
endemic species, 590
endergonic, 113
endergonic reactions, 96
endocrine gland, 441
endocrine glands, 421
Endocytosis, 82
endocytosis, 85
endomembrane system, 64, 85
endoplasmic reticulum (ER), 65, 85
endosymbiosis, 319
endosymbiotic theory, 303
endotherm, 404, 441
environmental disturbance, 525
environmental disturbances, 523
enzyme, 51, 113
Enzymes, 45
enzymes, 97
epidemic, 319
epidemics, 347
epidermis, 364, 396
epigenetic, 344, 360
epistasis, 192, 194
Equilibrium, 531
equilibrium, 563
esophagus, 408, 441
essential nutrient, 441
essential nutrients, 413
estrogen, 491, 495
Estuaries, 559
estuary, 563
eucoelomate, 396
eucoelomates, 360
eudicots, 347, 351
eukaryote, 24
eukaryotes, 10
eukaryotic cell, 60, 85
Euploid, 165, 170
eutherian mammal, 396
Eutherian mammals, 393
eutrophication, 542, 564
evaporation, 35, 51
evolution, 12, 24
Excavata, 306, 319
exergonic, 113
exergonic reactions, 96
exocrine gland, 441
Exocrine glands, 421
Exocytosis, 83
exocytosis, 85
exons, 220
Exotic species, 579
exotic species, 590
exponential growth, 504, 525
external fertilization, 481, 495
extinction, 570, 590
extinction rate, 590
extinction rates, 584
extracellular digestion, 365, 396
extracellular matrix, 70, 85
extremophile, 319
extremophiles, 294

F
F₁, 175, 194
F₂, 175, 194
facilitated transport, 78, 85
fallout, 546, 564
falsifiable, 20, 24
family, 276, 288
fat, 43, 51
Feedback inhibition, 102
feedback inhibition, 113
fermentation, 108, 113
fern, 351
ferns, 336
fertilization, 157, 170
fibrous joint, 441
fibrous joints, 428
filament, 344, 351
Fission, 478
fission, 495
Flagella, 64
flagellum, 85
fluid mosaic model, 74, 85
follicle stimulating hormone (FSH), 490, 495
food chain, 531, 564
food web, 533, 564
foodborne disease, 299, 319
Foundation species, 521
foundation species, 525
founder effect, 257, 270
fragmentation, 363, 396, 495
Fragementation, 479
frog, 396
Frogs, 389
frontal lobe, 436, 441
FtsZ, 147, 149

G
G0 phase, 141, 149
G1 phase, 137, 149
G2 phase, 138, 149
gallbladder, 411, 441
gametangia, 327
gametangium, 351
gamete, 149
gametes, 136
gametophyte, 170, 327, 351
gametophytes, 157
gap junction, 85
Gap junctions, 72
gastrodermis, 364, 396
gastrovascular cavity, 365, 396
gastrulation, 484, 495
Gel electrophoresis, 226
gel electrophoresis, 245
gemmule, 396
gemmules, 363
gene, 149
gene expression, 216, 220
gene flow, 257, 270
gene pool, 254, 270
Gene therapy, 233
gene therapy, 245
genes, 136
Genetic code, 214, 220
Genetic diversity, 569
genetic diversity, 590
genetic drift, 255, 270
genetic engineering, 232, 245
genetic map, 236, 245
genetic testing, 245
genetically modified organism, 232
genetically modified organism (GMO), 245
genome, 136, 149
genomics, 236, 245
genotype, 178, 194
genus, 276, 288
germ cell, 170
germ cells, 155
germ layer, 396
germ layers, 359
gestation, 493, 495
gestation period, 493, 495
gingkophyte, 351
ginkophyte, 351
glia, 432, 441
Glomeromycota, 314, 319
Glycogen, 41
glycogen, 51
Glycolysis, 103
glycolysis, 113
glycoprotein, 451, 472
GnRH, 396
Gnathostomes, 386
Gnetophytes, 351
Gnetophyte, 351
Golgi apparatus, 66, 86
gonadotropin-releasing hormone (GnRH), 490, 495
Gram-negative, 295, 319
Gram-positive, 295, 319
granum, 121, 132
grazing food web, 534, 564
gross primary productivity, 535, 564
gymnosperm, 351
Gymnosperms, 339
gynoecium, 344, 351

H
habitat heterogeneity, 572, 590
hagfish, 396
Hagfishes, 385
haplodiplontic, 327, 351
haploid, 136, 149
haploid-dominant, 155, 170
Haplontic, 327
haplontic, 351
heat energy, 94, 113
helicase, 205, 220
helper T lymphocyte (Th), 472
hemizygous, 189, 194
hemocoeI, 371, 396
herbaceous, 349, 351
Hermaphroditism, 480
hermaphroditism, 495
heterodont teeth, 392, 396
heterosporous, 327, 351
heterotroph, 132
Heterotrophs, 118
heterozygous, 179, 194
hippocampus, 436, 441
homeostasis, 8, 24
homologous chromosomes, 136, 149
homologous structure, 270
homologous structures, 253
homosporous, 327, 351
homozygous, 178, 194
hormone, 51, 441
hormone receptors, 421
Hormones, 45, 421
hornwort, 351
hornworts, 333
horsetail, 351
Horsetails, 335
host, 519, 525
human beta chorionic gonadotropin (β-HCG), 493, 495
humoral immune response, 460, 472
hybridization, 194
hybridizations, 175
hydrogen bond, 33, 51
hydrophilic, 34, 52
hydrophobic, 34, 52
hydrosphere, 537, 564
hydrothermal vent, 293, 319
hyoid bone, 427, 441
hypersensitivity, 469, 472
hypertonic, 79, 86
hypha, 312, 319
hypothalamus, 437, 441
hypothesis, 18, 24
hypothesis-based science, 19, 24
hypotonic, 79, 86

I
immune tolerance, 468, 473
Immunodeficiency, 469
immunodeficiency, 473
incomplete dominance, 186, 194
Inductive reasoning, 18
inductive reasoning, 24
inferior vena cava, 417, 441
inflammation, 457, 473
inheritance of acquired characteristics, 250, 270
inhibin, 491, 495
Innate immunity, 456
inmate immunity, 473
inner cell mass, 483, 495
interferon, 457, 473
interkinesis, 161, 170
internal fertilization, 481, 495
interphase, 137, 149
interstitial cell of Leydig, 495
interstitial cells of Leydig, 485
interstitial fluid, 406, 441
intertidal zone, 555, 564
intracellular, 421
intracellular digestion, 362, 396
intracellular hormone receptor, 441
intraspecific competition, 506, 525
intron, 220
introns, 212
ionic bond, 32, 52
Island biogeography, 521
isotopic, 80, 86
isotope, 52
Isotopes, 52

J
J-shaped growth curve, 505, 525
joint, 428, 442

K
K-selected species, 510, 525
karyogram, 164, 170
karyotype, 164, 170
keystone species, 522, 525
kidney, 442
kidneys, 406
kinetic energy, 95, 113
kinetochore, 140, 149
kingdom, 276, 288

L
labia majora, 487, 495
labia minora, 487, 495
lagging strand, 205, 220
lamprey, 396
Lampreys, 386
lancelet, 396
Lancelets, 384
large intestine, 411, 442
larynx, 415, 442
lateral, 387
lateral line, 397
law of dominance, 179, 194
law of independent assortment, 183, 194
law of segregation, 181, 194
leading strand, 205, 220
lichen, 319
Lichens, 317
life cycle, 170
life cycles, 154
life science, 24

life sciences, 18
life table, 525
life tables, 500
light-dependent reaction, 132
light-dependent reactions, 121
limbic system, 437, 442
line, 387
linkage, 191, 194
Lipids, 42
lipids, 52
litmus, 37
litmus paper, 52
liver, 411, 442
Liverwort, 352
Liverworts, 333
locus, 136, 149
logistic growth, 505, 525
Lophotrochozoa, 374, 397
luteinizing hormone (LH), 490, 495
Lymph, 466
lymph, 473
lymphocyte, 458, 473
lysosome, 86
lysosomes, 66

M
macroevolution, 254, 270
macromolecule, 24, 52
macromolecules, 9, 39
macrophage, 457, 473
madreporite, 381, 397
major histocompatibility class (MHC) I, 473
major histocompatibility class (MHC) I molecules, 458
major histocompatibility class (MHC) II molecule, 473
mammal, 397
Mammals, 392
mammary gland, 397
Mammary glands, 392
mantle, 375, 397
mark and recapture, 501, 525
marsupial, 397
Marsupials, 392
mass number, 28, 52
mast cell, 473
Mast cells, 457
Matter, 28
matter, 52
maximum parsimony, 287, 288
medusa, 364, 397
megasporeocyte, 339, 352
meiosis, 154, 170
meiosis I, 157, 170
Meiosis II, 157
meiosis II, 170
membrane potential, 442
memory cell, 464, 473
meningess, 435, 442
menstrual cycle, 491, 495
mesogloea, 364, 397
mesohyl, 362, 397
mesophyll, 120, 132
metabolism, 92, 114
Metagenomics, 240
metagenomics, 245
metamerism, 379, 397
metaphase, 140, 149
metaphase plate, 140, 149
MHC class II molecule, 461
microbial mat, 293, 320
microevolution, 254, 270
microscope, 56, 86
microsporocyte, 352
microsporocytes, 339
migration, 255, 270
mimicry, 516, 525
mimicry, 442
Minerals, 413
mismatch repair, 208, 220
Mitochondria, 68
mitochondria, 86
mitosis, 138, 149
mitotic, 137, 138
mitotic phase, 149
mitotic spindle, 149
model organism, 245
model organisms, 238
model system, 174, 194
modern synthesis, 254, 270
mold, 320
molds, 313
molecular systematics, 284, 288
molecule, 9, 24
Mollusca, 374, 397
monocot, 352
monocots, 347
monocyte, 457, 473
monoeious, 363, 397
monoecious, 363, 397
monoecious, 363, 397
monophyletic group, 285, 288
monosaccharide, 52
Monosaccharides, 40
monosomy, 165, 170
monotreme, 397
monotremes, 392
mortality rate, 502, 525
moss, 352
mosses, 334
mRNA, 210, 220
MRSA, 320
mutation, 209, 220
mutualism, 519, 525
mycelium, 312, 320
Mycorrhiza, 316
mycorrhiza, 320
mycologies, 315
mycosis, 320
myofibril, 442
myofibrils, 430
myofilament, 442
myofilaments, 431
Myxini, 385, 397

N
nacre, 376, 397
nasal cavity, 415, 442
natural killer (NK) cell, 458, 473
natural science, 24
natural sciences, 18
Natural selection, 251
natural selection, 270
nematocyte, 397
nematocytes, 363
Nematoda, 370, 397
nephron, 442
nephrons, 407
neritic zone, 556, 564
Net primary productivity, 535
net primary productivity, 564
neuron, 442
neurons, 432
neutron, 52
Neutrons, 28
neutrophil, 458, 473
nitrogenous base, 200, 220
non-renewable resource, 541, 564
noncompetitive inhibition, 100, 114
nondisjunction, 164, 170
nonpolar covalent bond, 52
Nonpolar covalent bonds, 32
nontemplate strand, 211, 220
nonvascular plant, 352
nonvascular plants, 331
notochord, 382, 397
nuclear envelope, 65, 86
nucleic acid, 52
nucleic acids, 49
nucleolus, 65, 86
nucleotide, 52
nucleotide excision repair, 208, 220
nucleotides, 49
nucleus, 28, 52, 65, 86

O
occupital lobe, 436, 442
oceanic zone, 556, 564
octet rule, 31, 52
oil, 52
oils, 44
Okazaki fragments, 205, 220
oncogene, 150
oncogenes, 143
one-child policy, 513, 525
oogenesis, 488, 495
open circulatory system, 442
Open circulatory systems, 417
Opisthokonta, 306, 320
oral cavity, 409, 442
order, 276, 288
organ, 24
organ system, 10, 24
organelle, 24, 86
organelles, 10, 60
organism, 24
Organisms, 10
organogenesis, 484, 496
Organs, 10
origin, 145, 150
osculum, 362, 397
osmolarity, 79, 86
Osmoregulation, 406
osmoregulation, 442
Osmosis, 79
osmosis, 86
osmotic balance, 406, 442
Osteichthyes, 387, 397
osstracoderm, 397
osstracoders, 385
ovarian cycle, 491, 496
ovary, 344, 352
oviduct, 496
oviducts, 487
oviparity, 482, 496
ovoviparity, 482, 496
ovulation, 492, 496
oxidative phosphorylation, 105, 114

P
p, 175, 194
pancreas, 411, 423, 442
pandemic, 320
pandemics, 297
paper, 37
parasite, 320, 519, 525
parasites, 305
parasympathetic nervous system, 439, 442
parathyroid gland, 442
parathyroid glands, 423
parietal lobe, 436, 442
Parthenogenesis, 480
parthenogenesis, 496
passive immune, 461
passive immunity, 473
Passive transport, 77
passive transport, 86
pathogen, 296, 320
pectoral girdle, 428, 442
peer-reviewed article, 24
Peer-reviewed articles, 23
pelagic realm, 555, 564
pelicle, 320
pellicles, 305
pelvic girdle, 428, 442
penis, 485, 496
pepsin, 410, 442
peptidoglycan, 295, 320
periodic table of elements, 29, 52
peripheral nervous system (PNS), 437, 442
peristalsis, 408, 442
permafrost, 553, 564
peroxisome, 86
Peroxisomes, 68
petal, 352
Petsals, 344
Petromyzontidae, 386, 397
pH scale, 37, 52
Phagocytosis, 83
phagocytosis, 86
Pharmacogenomics, 240
pharmacogenomics, 245
pharyngeal slit, 397
Pharyngeal slits, 382
pharynx, 415, 442
phase, 137
phenotype, 178, 194
phloem, 334, 352
phosphate group, 200, 220
phospholipid, 52
Phospholipids, 45
photic zone, 555, 564
photoautotroph, 132, 564
photoautotrophs, 118, 535
photon, 124, 132
photosysstem, 124, 132
phototroph, 320
phototrophs, 292
phylogenetic tree, 14, 24, 279, 288
phylogeny, 276, 288
phylum, 276, 288
physical map, 245
Physical maps, 236
physical science, 24
physical sciences, 18
pigment, 120, 132
pinocytosis, 83, 86
pioneer species, 524, 526
pistil, 344, 352
pituitary gland, 422, 443
placenta, 493, 496
planktivore, 564
planktivores, 558
plasma membrane, 63, 86
plasmid, 228, 245
plasmodesma, 86
Plasmodesmata, 71
plastid, 303, 320
pneumatic, 391
pneumatic bone, 397
polar covalent bond, 32, 52
Polymerase chain reaction (PCR), 227
polymerase chain reaction (PCR), 245
poly, 364, 397
polypeptide, 46, 52
polyplaid, 167, 170
polysaccharide, 41, 52
population, 12, 24
population density, 500, 526
population genetics, 254, 270
population size, 500, 526
Porifera, 361, 397
post-anal tail, 383, 397
post-transcriptional, 217, 220
post-translational, 217, 220
potential energy, 95, 114
primary bronchi, 415
primary bronchus, 443
primary consumer, 564
primary consumers, 531
primary immune response, 464, 473
primary succession, 523, 526
Primates, 393, 397
primer, 205, 221
producer, 564
producers, 531
progesterone, 491, 496
prokaryote, 24
Prokaryotes, 10
prokaryotic cell, 59, 86
prometaphase, 139, 150
promoter, 210, 221
prophase, 139, 150
Prosimians, 393
prosimians, 398
prostate gland, 486, 496
protein, 52
protein signature, 243, 245
Proteins, 45
proteomics, 243, 245
proto-oncogene, 150
proto-oncogenes, 143
proton, 28, 52
prostomose, 398
Protostomes, 360
pseudocoelomate, 398
pseudocoelomates, 360
pseudopeptidoglycan, 296, 320
pulmonary circulation, 417, 443
Punnett square, 180, 194

Q
quadrat, 501, 526
quiescent, 150

R
r-selected species, 510, 526
radial symmetry, 358, 398
radioactive isotope, 52
radioactive isotopes, 29
radula, 374, 398
receptor-mediated endocytosis, 83, 86
Recessive, 177
recessive, 195
reciprocal cross, 177, 195
recombinant, 158, 170
recombinant DNA, 230, 245
recombinant protein, 245
recombinant proteins, 230
recombination, 191, 195
rectum, 411, 443
reduction division, 162, 170
Relative species abundance, 521
relative species abundance, 526
renal artery, 407, 443
renal vein, 407, 443
replication fork, 221
replication forks, 205
Reproductive cloning, 230
reproductive cloning, 245
resilience, 531
resilience (ecological), 564
resistance, 531
resistance (ecological), 564
restriction enzyme, 245
restriction enzymes, 229
reverse genetics, 232, 245
Rhizaria, 306, 320
ribonucleic acid (RNA), 49, 52
ribosome, 86
Ribosomes, 68
RNA polymerase, 211, 221
rooted, 279, 288
rough endoplasmic reticulum (RER), 65, 86
rRNA, 213, 221

S
S phase, 138, 150
S-shaped curve, 505
S-shaped growth curve, 526
salamander, 398
salamanders, 388
salivary gland, 443
salivary glands, 409
saprobes, 320
saprobes, 310
sarclemma, 430, 443
sarcomere, 431, 443
Sarcopterygii, 387, 398
saturated fatty acid, 52
Saturated fatty acids, 44
savanna, 564
Savannas, 549
Science, 17
science, 19, 25
scientific law, 25
scientific laws, 18
scientific method, 18, 25
scientific theory, 18, 25
scrotum, 485, 496
sebaceous gland, 398
Sebaceous glands, 392
second consumer, 564
Secondary consumers, 531
secondary immune response, 465, 473
secondary plant compound, 590
secondary plant compounds, 572
secondary succession, 523, 526
selectively permeable, 77, 86
Semen, 485
semen, 496
semiconservative replication, 205, 221
T

T cell, 473
T cells, 460
tadpole, 389, 398
taxon, 276, 288
Taxonomy, 276
taxonomy, 288
telomerase, 206, 221
telomere, 221
telomer, 206
telophase, 140, 150
temperate forest, 564
tropical rainforest, 565
Tropical rainforests, 548
Tumor suppressor gene, 150
Tumor suppressor genes, 144
tunicate, 398
tunicates, 383

U
unified cell theory, 59, 87
unsaturated fatty acid, 44, 53
up-regulation, 422, 444
ureter, 407, 444
urethra, 407, 444
urinary bladder, 407, 444
Urochordata, 383, 398
Urodela, 388, 398
uterus, 487, 496

V
vaccine, 455, 473
vacuole, 87
vacuoles, 67
vagina, 487, 496
van der Waals interaction, 53
van der Waals interactions, 33
variable, 20, 25
variation, 252, 270
vascular plant, 352
Vascular plants, 331
vein, 444
Veins, 420
ventricle, 417, 444
vertebral column, 382, 398, 428, 444
vesicle, 87
Vesicles, 67
vestigial structure, 270
vestigial structures, 259
vicariance, 263, 270
viral envelope, 451, 473
virion, 451, 473
vitamin, 444
Vitamins, 413
viviparity, 482, 496

W
water vascular system, 380, 398
wavelength, 123, 132
wetland, 565
Wetlands, 562
whisk fern, 352
whisk ferns, 336
white blood cell, 457, 473
white-nose syndrome, 580, 590
Whole genome sequencing, 238
whole genome sequencing, 245
wild type, 187, 195

X
X inactivation, 166, 171
X-linked, 188, 195
Xylem, 334
xylem, 352

Y
yeast, 320
yeasts, 312

Z
zero population growth, 505, 526
zona pellucida, 483, 496
Zygomycota, 314, 320